TY - GEN
T1 - Grid-Based Stochastic Model Predictive Control for Trajectory Planning in Uncertain Environments
AU - Brudigam, Tim
AU - Luzio, Fulvio Di
AU - Pallottino, Lucia
AU - Wollherr, Dirk
AU - Leibold, Marion
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/9/20
Y1 - 2020/9/20
N2 - Stochastic Model Predictive Control has proved to be an efficient method to plan trajectories in uncertain environments, e.g., for autonomous vehicles. Chance constraints ensure that the probability of collision is bounded by a predefined risk parameter. However, considering chance constraints in an optimization problem can be challenging and computationally demanding. In this paper, we present a grid-based Stochastic Model Predictive Control approach. This approach allows to determine a simple deterministic reformulation of the chance constraints and reduces the computational effort, while considering the stochastic nature of the environment. Within the proposed method, we first divide the environment into a grid and, for each predicted step, assign each cell a probability value, which represents the probability that this cell will be occupied by surrounding vehicles. Then, the probabilistic grid is transformed into a binary grid of admissible and inadmissible cells by applying a threshold, representing a risk parameter. Only cells with an occupancy probability lower than the threshold are admissible for the controlled vehicle. Given the admissible cells, a convex hull is generated, which can then be used for trajectory planning. Simulations of an autonomous driving highway scenario show the benefits of the proposed grid-based Stochastic Model Predictive Control method.
AB - Stochastic Model Predictive Control has proved to be an efficient method to plan trajectories in uncertain environments, e.g., for autonomous vehicles. Chance constraints ensure that the probability of collision is bounded by a predefined risk parameter. However, considering chance constraints in an optimization problem can be challenging and computationally demanding. In this paper, we present a grid-based Stochastic Model Predictive Control approach. This approach allows to determine a simple deterministic reformulation of the chance constraints and reduces the computational effort, while considering the stochastic nature of the environment. Within the proposed method, we first divide the environment into a grid and, for each predicted step, assign each cell a probability value, which represents the probability that this cell will be occupied by surrounding vehicles. Then, the probabilistic grid is transformed into a binary grid of admissible and inadmissible cells by applying a threshold, representing a risk parameter. Only cells with an occupancy probability lower than the threshold are admissible for the controlled vehicle. Given the admissible cells, a convex hull is generated, which can then be used for trajectory planning. Simulations of an autonomous driving highway scenario show the benefits of the proposed grid-based Stochastic Model Predictive Control method.
UR - http://www.scopus.com/inward/record.url?scp=85099653194&partnerID=8YFLogxK
U2 - 10.1109/ITSC45102.2020.9294388
DO - 10.1109/ITSC45102.2020.9294388
M3 - Conference contribution
AN - SCOPUS:85099653194
T3 - 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020
BT - 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 23rd IEEE International Conference on Intelligent Transportation Systems, ITSC 2020
Y2 - 20 September 2020 through 23 September 2020
ER -