GPU-based nonlocal filtering for large scale SAR processing

Gerald Baier, Xiao Xiang Zhu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

In the past few years nonlocal filters have emerged as a serious contender for denoising synthetic aperture radar (SAR) images, offering superior noise reduction and detail preservation compared to many other filters. In this manuscript we analyze how nonlocal filters, whose computational costs were so far prohibitive for large scale processing, can be implemented efficiently on graphics processing units (GPU). As a case study NL-SAR, a state of the art SAR filter, is implemented to run on a NVIDIA Tesla K40. We describe the appeal of GPUs, or any other coprocessor, for nonlocal filters. Nonlocal filtering of TanDEM-X interferograms for generating digital elevation models with a higher resolution and accuracy is given as an application that benefits from efficient and fast nonlocal filtering.

Original languageEnglish
Title of host publication2016 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7608-7611
Number of pages4
ISBN (Electronic)9781509033324
DOIs
StatePublished - 1 Nov 2016
Externally publishedYes
Event36th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016 - Beijing, China
Duration: 10 Jul 201615 Jul 2016

Publication series

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)
Volume2016-November

Conference

Conference36th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016
Country/TerritoryChina
CityBeijing
Period10/07/1615/07/16

Keywords

  • denoising
  • graphics processing units (GPU)
  • nonlocal
  • synthetic aperture radar

Fingerprint

Dive into the research topics of 'GPU-based nonlocal filtering for large scale SAR processing'. Together they form a unique fingerprint.

Cite this