Global k-Space Interpolation for Dynamic MRI Reconstruction Using Masked Image Modeling

Jiazhen Pan, Suprosanna Shit, Özgün Turgut, Wenqi Huang, Hongwei Bran Li, Nil Stolt-Ansó, Thomas Küstner, Kerstin Hammernik, Daniel Rueckert

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review


In dynamic Magnetic Resonance Imaging (MRI), k-space is typically undersampled due to limited scan time, resulting in aliasing artifacts in the image domain. Hence, dynamic MR reconstruction requires not only modeling spatial frequency components in the x and y directions of k-space but also considering temporal redundancy. Most previous works rely on image-domain regularizers (priors) to conduct MR reconstruction. In contrast, we focus on interpolating the undersampled k-space before obtaining images with Fourier transform. In this work, we connect masked image modeling with k-space interpolation and propose a novel Transformer-based k-space Global Interpolation Network, termed k-GIN. Our k-GIN learns global dependencies among low- and high-frequency components of 2D+t k-space and uses it to interpolate unsampled data. Further, we propose a novel k-space Iterative Refinement Module (k-IRM) to enhance the high-frequency components learning. We evaluate our approach on 92 in-house 2D+t cardiac MR subjects and compare it to MR reconstruction methods with image-domain regularizers. Experiments show that our proposed k-space interpolation method quantitatively and qualitatively outperforms baseline methods. Importantly, the proposed approach achieves substantially higher robustness and generalizability in cases of highly-undersampled MR data.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings
EditorsHayit Greenspan, Hayit Greenspan, Anant Madabhushi, Parvin Mousavi, Septimiu Salcudean, James Duncan, Tanveer Syeda-Mahmood, Russell Taylor
PublisherSpringer Science and Business Media Deutschland GmbH
Number of pages11
ISBN (Print)9783031439988
StatePublished - 2023
Event26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023 - Vancouver, Canada
Duration: 8 Oct 202312 Oct 2023

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14229 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349


Conference26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023


  • Cardiac MR Imaging Reconstruction
  • Masked Autoencoders
  • Masked Image Modeling
  • Transformers
  • k-space Interpolation


Dive into the research topics of 'Global k-Space Interpolation for Dynamic MRI Reconstruction Using Masked Image Modeling'. Together they form a unique fingerprint.

Cite this