GhostLink: Latent network inference for influence-aware recommendation

Subhabrata Mukherjee, Stephan Günnemann

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Social influence plays a vital role in shaping a user's behavior in online communities dealing with items of fine taste like movies, food, and beer. For online recommendation, this implies that users' preferences and ratings are influenced due to other individuals. Given only time-stamped reviews of users, can we find out who-influences-whom, and characteristics of the underlying influence network? Can we use this network to improve recommendation? While prior works in social-aware recommendation have leveraged social interaction by considering the observed social network of users, many communities like Amazon, Beeradvocate, and Ratebeer do not have explicit user-user links. Therefore, we propose GhostLink, an unsupervised probabilistic graphical model, to automatically learn the latent influence network underlying a review community - given only the temporal traces (timestamps) of users' posts and their content. Based on extensive experiments with four real-world datasets with 13 million reviews, we show that GhostLink improves item recommendation by around 23% over state-of-the-art methods that do not consider this influence. As additional use-cases, we show that GhostLink can be used to differentiate between users' latent preferences and influenced ones, as well as to detect influential users based on the learned influence graph.

Original languageEnglish
Title of host publicationThe Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019
PublisherAssociation for Computing Machinery, Inc
Pages1310-1320
Number of pages11
ISBN (Electronic)9781450366748
DOIs
StatePublished - 13 May 2019
Event2019 World Wide Web Conference, WWW 2019 - San Francisco, United States
Duration: 13 May 201917 May 2019

Publication series

NameThe Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019

Conference

Conference2019 World Wide Web Conference, WWW 2019
Country/TerritoryUnited States
CitySan Francisco
Period13/05/1917/05/19

Keywords

  • Content Analysis
  • Generative Model
  • Review Community
  • Social Influence
  • Social Recommendation

Fingerprint

Dive into the research topics of 'GhostLink: Latent network inference for influence-aware recommendation'. Together they form a unique fingerprint.

Cite this