Geometric deep learning on anatomical meshes for the prediction of alzheimer's disease

Ignacio Sarasua, Jonwong Lee, Christian Wachinger

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Scopus citations

Abstract

Geometric deep learning can find representations that are optimal for a given task and therefore improve the performance over pre-defined representations. While current work has mainly focused on point representations, meshes also contain connectivity information and are therefore a more comprehensive characterization of the underlying anatomical surface. In this work, we evaluate four recent geometric deep learning approaches that operate on mesh representations. These approaches can be grouped into template-free and template-based approaches, where the template-based methods need a more elaborate pre-processing step with the definition of a common reference template and correspondences. We compare the different networks for the prediction of Alzheimer's disease based on the meshes of the hippocampus. Our results show advantages for template-based methods in terms of accuracy, number of learnable parameters, and training speed. While the template creation may be limiting for some applications, neuroimaging has a long history of building templates with automated tools readily available. Overall, working with meshes is more involved than working with simplistic point clouds, but they also offer new avenues for designing geometric deep learning architectures.

Original languageEnglish
Title of host publication2021 IEEE 18th International Symposium on Biomedical Imaging, ISBI 2021
PublisherIEEE Computer Society
Pages1356-1359
Number of pages4
ISBN (Electronic)9781665412469
DOIs
StatePublished - 13 Apr 2021
Externally publishedYes
Event18th IEEE International Symposium on Biomedical Imaging, ISBI 2021 - Nice, France
Duration: 13 Apr 202116 Apr 2021

Publication series

NameProceedings - International Symposium on Biomedical Imaging
Volume2021-April
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Conference

Conference18th IEEE International Symposium on Biomedical Imaging, ISBI 2021
Country/TerritoryFrance
CityNice
Period13/04/2116/04/21

Fingerprint

Dive into the research topics of 'Geometric deep learning on anatomical meshes for the prediction of alzheimer's disease'. Together they form a unique fingerprint.

Cite this