TY - JOUR
T1 - Genotypic and phenotypic characterization of hydrogenotrophic denitrifiers
AU - Duffner, Clara
AU - Kublik, Susanne
AU - Fösel, Bärbel
AU - Frostegård, Åsa
AU - Schloter, Michael
AU - Bakken, Lars
AU - Schulz, Stefanie
N1 - Publisher Copyright:
© 2022 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
PY - 2022/4
Y1 - 2022/4
N2 - Stimulating litho-autotrophic denitrification in aquifers with hydrogen is a promising strategy to remove excess NO3−, but it often entails accumulation of the cytotoxic intermediate NO2− and the greenhouse gas N2O. To explore if these high NO2− and N2O concentrations are caused by differences in the genomic composition, the regulation of gene transcription or the kinetics of the reductases involved, we isolated hydrogenotrophic denitrifiers from a polluted aquifer, performed whole-genome sequencing and investigated their phenotypes. We therefore assessed the kinetics of NO2−, NO, N2O, N2 and O2 as they depleted O2 and transitioned to denitrification with NO3− as the only electron acceptor and hydrogen as the electron donor. Isolates with a complete denitrification pathway, although differing intermediate accumulation, were closely related to Dechloromonas denitrificans, Ferribacterium limneticum or Hydrogenophaga taeniospiralis. High NO2− accumulation was associated with the reductases' kinetics. While available, electrons only flowed towards NO3− in the narG-containing H. taeniospiralis but flowed concurrently to all denitrification intermediates in the napA-containing D. denitrificans and F. limneticum. The denitrification regulator RegAB, present in the napA strains, may further secure low intermediate accumulation. High N2O accumulation only occurred during the transition to denitrification and is thus likely caused by delayed N2O reductase expression.
AB - Stimulating litho-autotrophic denitrification in aquifers with hydrogen is a promising strategy to remove excess NO3−, but it often entails accumulation of the cytotoxic intermediate NO2− and the greenhouse gas N2O. To explore if these high NO2− and N2O concentrations are caused by differences in the genomic composition, the regulation of gene transcription or the kinetics of the reductases involved, we isolated hydrogenotrophic denitrifiers from a polluted aquifer, performed whole-genome sequencing and investigated their phenotypes. We therefore assessed the kinetics of NO2−, NO, N2O, N2 and O2 as they depleted O2 and transitioned to denitrification with NO3− as the only electron acceptor and hydrogen as the electron donor. Isolates with a complete denitrification pathway, although differing intermediate accumulation, were closely related to Dechloromonas denitrificans, Ferribacterium limneticum or Hydrogenophaga taeniospiralis. High NO2− accumulation was associated with the reductases' kinetics. While available, electrons only flowed towards NO3− in the narG-containing H. taeniospiralis but flowed concurrently to all denitrification intermediates in the napA-containing D. denitrificans and F. limneticum. The denitrification regulator RegAB, present in the napA strains, may further secure low intermediate accumulation. High N2O accumulation only occurred during the transition to denitrification and is thus likely caused by delayed N2O reductase expression.
UR - http://www.scopus.com/inward/record.url?scp=85124076607&partnerID=8YFLogxK
U2 - 10.1111/1462-2920.15921
DO - 10.1111/1462-2920.15921
M3 - Article
C2 - 35106904
AN - SCOPUS:85124076607
SN - 1462-2912
VL - 24
SP - 1887
EP - 1901
JO - Environmental Microbiology
JF - Environmental Microbiology
IS - 4
ER -