TY - CHAP
T1 - Genome Editing in Pigs
AU - Preisinger, David
AU - Winogrodzki, Thomas
AU - Klinger, Bernhard
AU - Schnieke, Angelika
AU - Rieblinger, Beate
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2023
Y1 - 2023
N2 - The generation of genetically engineered (GE) pigs for disease modeling and xenotransplantation has been massively facilitated by the discovery of the CRISPR/Cas9 system. For livestock, genome editing is a powerful tool when used in combination with either somatic cell nuclear transfer (SCNT) or microinjection (MI) into fertilized oocytes. To generate either knockout or knock-in animals using SCNT, genome editing is carried out in vitro. This has the advantage that fully characterized cells are being employed to generate cloned pigs, predetermining their genetic makeups. However, this technique is labor-intensive and, hence, SCNT is better suited for more challenging projects such as the generation of multi-knockout- and knock-in pigs. Alternatively, CRISPR/Cas9 is introduced directly into fertilized zygotes via microinjection to produce knockout pigs more rapidly. Finally, the embryos are each transferred into recipient sows to deliver GE piglets. Both techniques, SCNT and MI, are technically challenging and therefore require skilled expertise, especially when applied for porcine embryos. Here, we present a detailed laboratory protocol for the generation of knockout and knock-in porcine somatic donor cells for SCNT and knockout pigs via microinjection. We describe the state-of-the-art method for isolation, cultivation, and manipulation of porcine somatic cells, which can then be used for SCNT. Moreover, we describe the isolation and maturation of porcine oocytes, their manipulation by microinjection, and the embryo transfer into surrogate sows.
AB - The generation of genetically engineered (GE) pigs for disease modeling and xenotransplantation has been massively facilitated by the discovery of the CRISPR/Cas9 system. For livestock, genome editing is a powerful tool when used in combination with either somatic cell nuclear transfer (SCNT) or microinjection (MI) into fertilized oocytes. To generate either knockout or knock-in animals using SCNT, genome editing is carried out in vitro. This has the advantage that fully characterized cells are being employed to generate cloned pigs, predetermining their genetic makeups. However, this technique is labor-intensive and, hence, SCNT is better suited for more challenging projects such as the generation of multi-knockout- and knock-in pigs. Alternatively, CRISPR/Cas9 is introduced directly into fertilized zygotes via microinjection to produce knockout pigs more rapidly. Finally, the embryos are each transferred into recipient sows to deliver GE piglets. Both techniques, SCNT and MI, are technically challenging and therefore require skilled expertise, especially when applied for porcine embryos. Here, we present a detailed laboratory protocol for the generation of knockout and knock-in porcine somatic donor cells for SCNT and knockout pigs via microinjection. We describe the state-of-the-art method for isolation, cultivation, and manipulation of porcine somatic cells, which can then be used for SCNT. Moreover, we describe the isolation and maturation of porcine oocytes, their manipulation by microinjection, and the embryo transfer into surrogate sows.
KW - CRISPR/Cas9
KW - Embryo transfer
KW - Genome editing
KW - Knock-in
KW - Knockout
KW - Microinjection
KW - Pig
KW - Porcine somatic cells
KW - Somatic cell nuclear transfer
KW - Zygote
UR - http://www.scopus.com/inward/record.url?scp=85151573901&partnerID=8YFLogxK
U2 - 10.1007/978-1-0716-2990-1_19
DO - 10.1007/978-1-0716-2990-1_19
M3 - Chapter
C2 - 36995680
AN - SCOPUS:85151573901
T3 - Methods in Molecular Biology
SP - 393
EP - 417
BT - Methods in Molecular Biology
PB - Humana Press Inc.
ER -