Genetic networks controlling the development of midbrain dopaminergic neurons

Nilima Prakash, Wolfgang Wurst

Research output: Contribution to journalReview articlepeer-review

116 Scopus citations

Abstract

Recent data have substantially advanced our understanding of midbrain dopaminergic neuron development. Firstly, a Wnt1-regulated genetic network, including Otx2 and Nkx2-2, and a Shh-controlled genetic cascade, including Lmx1a, Msx1 and Nkx6-1, have been unravelled, acting in parallel or sequentially to establish a territory competent for midbrain dopaminergic precursor production at relatively early stages of neural development. Secondly, the same factors (Wnt1 and Lmx1a/ Msx1) appear to regulate midbrain dopaminergic and/or neuronal fate specification in the postmitotic progeny of these precursors by controlling the expression of midbrain dopaminergic-specific and/or general proneural factors at later stages of neural development. For the first time, early inductive events have thus been linked to later differentiation processes in midbrain dopaminergic neuron development. Given the pivotal importance of this neuronal population for normal function of the human brain and its involvement in severe neurological and psychiatric disorders such as Parkinson's Disease, these advances open new prospects for potential stem cell-based therapies. We will summarize these new findings in the overall context of midbrain dopaminergic neuron development in this review. 2006 The Authors. Journal compilation

Original languageEnglish
Pages (from-to)403-410
Number of pages8
JournalJournal of Physiology
Volume575
Issue number2
DOIs
StatePublished - Sep 2006

Fingerprint

Dive into the research topics of 'Genetic networks controlling the development of midbrain dopaminergic neurons'. Together they form a unique fingerprint.

Cite this