TY - JOUR
T1 - Genetic diversity and phylogenetic relationships of bacteria belonging to the Ochrobactrum-Brucella group by recA and 16S rRNA gene-based comparative sequence analysis
AU - Scholz, Holger C.
AU - Al Dahouk, Sascha
AU - Tomaso, Herbert
AU - Neubauer, Heinrich
AU - Witte, Angela
AU - Schloter, Michael
AU - Kämpfer, Peter
AU - Falsen, Enevold
AU - Pfeffer, Martin
AU - Engel, Marion
PY - 2008/3/19
Y1 - 2008/3/19
N2 - The genetic diversity and phylogenetic interrelationships among 106 Ochrobactrum strains (O. anthropi: 72, O. intermedium: 22, O. tritici: 5, O. oryzae: 2, O. grignonense: 2, O. gallinifaecis: 1, O. lupini: 2), the type strains of the eight Brucella species and other closely related taxa were studied by recA and rrs gene (16S rRNA) comparative sequence analysis. Both markers correctly delineated the various Ochrobactrum species; however, resolution at the subspecies level was considerably higher in the recA gene-based approach. Phylogenetic analyses using neighbor-joining, parsimony, and maximum likelihood algorithms generated trees with similar topologies but the overall branching order, and also the order of the subclades, were not stable in either assay, which could be explained by generally high recA and rrs sequence similarities. Ochrobactrum and Pseudochrobactrum formed separate clades distinct from other Alphaproteobacteria with Bartonella, Agrobacterium, and Rhizobium as the closest relatives. O. gallinifaecis was the most distinct member, when compared to the type species O. anthropi, with rrs and recA similarities of 96.2% and 81.4%. Brucella species were indistinguishable, exhibiting high rrs and recA gene similarities of 98.6% and 85.5% compared with Ochrobactrum intermedium. At the protein level, all RecA sequences among the various Ochrobactrum species and between Ochrobactrum and Brucella were highly similar with only a few amino acid substitutions. O. anthropi and O. tritici were indistinguishable by means of their RecA proteins. A set of initially biochemically classified strains did not cluster within their assigned species and they either grouped within other known species or grouped as potential novel Ochrobactrum species. In further investigations, these strains were reclassified and described as novel species. In summary, Ochrobactrum is a highly diverse genus comprising several novel species. We recommend recA- in addition to rrs gene-analysis for correct species allocation and subtyping of novel Ochrobactrum isolates.
AB - The genetic diversity and phylogenetic interrelationships among 106 Ochrobactrum strains (O. anthropi: 72, O. intermedium: 22, O. tritici: 5, O. oryzae: 2, O. grignonense: 2, O. gallinifaecis: 1, O. lupini: 2), the type strains of the eight Brucella species and other closely related taxa were studied by recA and rrs gene (16S rRNA) comparative sequence analysis. Both markers correctly delineated the various Ochrobactrum species; however, resolution at the subspecies level was considerably higher in the recA gene-based approach. Phylogenetic analyses using neighbor-joining, parsimony, and maximum likelihood algorithms generated trees with similar topologies but the overall branching order, and also the order of the subclades, were not stable in either assay, which could be explained by generally high recA and rrs sequence similarities. Ochrobactrum and Pseudochrobactrum formed separate clades distinct from other Alphaproteobacteria with Bartonella, Agrobacterium, and Rhizobium as the closest relatives. O. gallinifaecis was the most distinct member, when compared to the type species O. anthropi, with rrs and recA similarities of 96.2% and 81.4%. Brucella species were indistinguishable, exhibiting high rrs and recA gene similarities of 98.6% and 85.5% compared with Ochrobactrum intermedium. At the protein level, all RecA sequences among the various Ochrobactrum species and between Ochrobactrum and Brucella were highly similar with only a few amino acid substitutions. O. anthropi and O. tritici were indistinguishable by means of their RecA proteins. A set of initially biochemically classified strains did not cluster within their assigned species and they either grouped within other known species or grouped as potential novel Ochrobactrum species. In further investigations, these strains were reclassified and described as novel species. In summary, Ochrobactrum is a highly diverse genus comprising several novel species. We recommend recA- in addition to rrs gene-analysis for correct species allocation and subtyping of novel Ochrobactrum isolates.
KW - 16S rRNA
KW - Brucella
KW - Genetic diversity
KW - Ochrobactrum
KW - Phylogeny
KW - recA
UR - http://www.scopus.com/inward/record.url?scp=39949083209&partnerID=8YFLogxK
U2 - 10.1016/j.syapm.2007.10.004
DO - 10.1016/j.syapm.2007.10.004
M3 - Article
C2 - 18222618
AN - SCOPUS:39949083209
SN - 0723-2020
VL - 31
SP - 1
EP - 16
JO - Systematic and Applied Microbiology
JF - Systematic and Applied Microbiology
IS - 1
ER -