TY - GEN
T1 - Generalized ordering constraints for multilabel optimization
AU - Strekalovskiy, Evgeny
AU - Cremers, Daniel
PY - 2011
Y1 - 2011
N2 - We propose a novel framework for imposing label ordering constraints in multilabel optimization. In particular, label jumps can be penalized differently depending on the jump direction. In contrast to the recently proposed MRF-based approaches, the proposed method arises from the viewpoint of spatially continuous optimization. It unifies and generalizes previous approaches to label ordering constraints: Firstly, it provides a common solution to three different problems which are otherwise solved by three separate approaches [4, 10, 14]. We provide an exact characterization of the penalization functions expressible with our approach. Secondly, we show that it naturally extends to three and higher dimensions of the image domain. Thirdly, it allows novel applications, such as the convex shape prior. Despite this generality, our model is easily adjustable to various label layouts and is also easy to implement. On a number of experiments we show that it works quite well, producing solutions comparable and superior to those obtained with previous approaches.
AB - We propose a novel framework for imposing label ordering constraints in multilabel optimization. In particular, label jumps can be penalized differently depending on the jump direction. In contrast to the recently proposed MRF-based approaches, the proposed method arises from the viewpoint of spatially continuous optimization. It unifies and generalizes previous approaches to label ordering constraints: Firstly, it provides a common solution to three different problems which are otherwise solved by three separate approaches [4, 10, 14]. We provide an exact characterization of the penalization functions expressible with our approach. Secondly, we show that it naturally extends to three and higher dimensions of the image domain. Thirdly, it allows novel applications, such as the convex shape prior. Despite this generality, our model is easily adjustable to various label layouts and is also easy to implement. On a number of experiments we show that it works quite well, producing solutions comparable and superior to those obtained with previous approaches.
UR - http://www.scopus.com/inward/record.url?scp=84856632142&partnerID=8YFLogxK
U2 - 10.1109/ICCV.2011.6126551
DO - 10.1109/ICCV.2011.6126551
M3 - Conference contribution
AN - SCOPUS:84856632142
SN - 9781457711015
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 2619
EP - 2626
BT - 2011 International Conference on Computer Vision, ICCV 2011
T2 - 2011 IEEE International Conference on Computer Vision, ICCV 2011
Y2 - 6 November 2011 through 13 November 2011
ER -