TY - JOUR
T1 - General mechanisms for stabilizing weakly compressible models
AU - Lu, Jinhua
AU - Adams, Nikolaus A.
N1 - Publisher Copyright:
© 2023 American Physical Society.
PY - 2023/5
Y1 - 2023/5
N2 - Many weakly compressible models with intrinsic mechanisms for stabilizing computation have been proposed to simulate incompressible flows. The present paper analyzes several weakly compressible models to establish general mechanisms that incorporate them into a unified and simple framework. It is found that all these models contain some identical numerical dissipation terms, mass diffusion terms in the continuity equation, and bulk viscosity terms in the momentum equation. They are proven to provide general mechanisms for stabilizing computation. Referring to the general mechanisms and the computational procedures of the lattice Boltzmann flux solver, two general weakly compressible solvers for isothermal flows and thermal flows are proposed. They can be directly derived from standard governing equations and implicitly introduce those numerical dissipation terms. Detailed numerical investigations demonstrate that the two general weakly compressible solvers have good numerical stability and accuracy for both isothermal and thermal flows, which validates the general mechanisms further and the general approach of constructing general weakly compressible solvers.
AB - Many weakly compressible models with intrinsic mechanisms for stabilizing computation have been proposed to simulate incompressible flows. The present paper analyzes several weakly compressible models to establish general mechanisms that incorporate them into a unified and simple framework. It is found that all these models contain some identical numerical dissipation terms, mass diffusion terms in the continuity equation, and bulk viscosity terms in the momentum equation. They are proven to provide general mechanisms for stabilizing computation. Referring to the general mechanisms and the computational procedures of the lattice Boltzmann flux solver, two general weakly compressible solvers for isothermal flows and thermal flows are proposed. They can be directly derived from standard governing equations and implicitly introduce those numerical dissipation terms. Detailed numerical investigations demonstrate that the two general weakly compressible solvers have good numerical stability and accuracy for both isothermal and thermal flows, which validates the general mechanisms further and the general approach of constructing general weakly compressible solvers.
UR - http://www.scopus.com/inward/record.url?scp=85161343507&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.107.055306
DO - 10.1103/PhysRevE.107.055306
M3 - Article
AN - SCOPUS:85161343507
SN - 2470-0045
VL - 107
JO - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
JF - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
IS - 5
M1 - 055306
ER -