General description of quasiadiabatic dynamical phenomena near exceptional points

Thomas J. Milburn, Jörg Doppler, Catherine A. Holmes, Stefano Portolan, Stefan Rotter, Peter Rabl

Research output: Contribution to journalArticlepeer-review

176 Scopus citations

Abstract

The appearance of so-called exceptional points in the complex spectra of non-Hermitian systems is often associated with phenomena that contradict our physical intuition. One example of particular interest is the state-exchange process predicted for an adiabatic encircling of an exceptional point. In this work we analyze this and related processes for the generic system of two coupled oscillator modes with loss or gain. We identify a characteristic system evolution consisting of periods of quasistationarity interrupted by abrupt nonadiabatic transitions and we present a qualitative and quantitative description of this switching behavior by connecting the problem to the phenomenon of stability loss delay. This approach makes accurate predictions for the breakdown of the adiabatic theorem as well as the occurrence of chiral behavior observed previously in this context and provides a general framework to model and understand quasiadiabatic dynamical effects in non-Hermitian systems.

Original languageEnglish
Article number052124
JournalPhysical Review A
Volume92
Issue number5
DOIs
StatePublished - 30 Nov 2015
Externally publishedYes

Fingerprint

Dive into the research topics of 'General description of quasiadiabatic dynamical phenomena near exceptional points'. Together they form a unique fingerprint.

Cite this