Functionalized Graphdiyne Nanowires: On-Surface Synthesis and Assessment of Band Structure, Flexibility, and Information Storage Potential

Florian Klappenberger, Raphael Hellwig, Ping Du, Tobias Paintner, Martin Uphoff, Liding Zhang, Tao Lin, Bahare Abedin Moghanaki, Mateusz Paszkiewicz, Ivana Vobornik, Jun Fujii, Olaf Fuhr, Yi Qi Zhang, Francesco Allegretti, Mario Ruben, Johannes V. Barth

Research output: Contribution to journalArticlepeer-review

49 Scopus citations

Abstract

Carbon nanomaterials exhibit extraordinary mechanical and electronic properties desirable for future technologies. Beyond the popular sp2-scaffolds, there is growing interest in their graphdiyne-related counterparts incorporating both sp2 and sp bonding in a regular scheme. Herein, we introduce carbonitrile-functionalized graphdiyne nanowires, as a novel conjugated, one-dimensional (1D) carbon nanomaterial systematically combining the virtues of covalent coupling and supramolecular concepts that are fabricated by on-surface synthesis. Specifically, a terphenylene backbone is extended with reactive terminal alkyne and polar carbonitrile (CN) moieties providing the required functionalities. It is demonstrated that the CN functionalization enables highly selective alkyne homocoupling forming polymer strands and gives rise to mutual lateral attraction entailing room-temperature stable double-stranded assemblies. By exploiting the templating effect of the vicinal Ag(455) surface, 40 nm long semiconducting nanowires are obtained and the first experimental assessment of their electronic band structure is achieved by angle-resolved photoemission spectroscopy indicating an effective mass below 0.1m0 for the top of the highest occupied band. Via molecular manipulation it is showcased that the novel oligomer exhibits extreme mechanical flexibility and opens unexplored ways of information encoding in clearly distinguishable CN-phenyl trans–cis species. Thus, conformational data storage with density of 0.36 bit nm−2 and temperature stability beyond 150 K comes in reach.

Original languageEnglish
Article number1704321
JournalSmall
Volume14
Issue number14
DOIs
StatePublished - 5 Apr 2018

Keywords

  • carbon nanomaterials
  • conjugated polymers
  • graphdiyne
  • information storage
  • on-surface synthesis

Fingerprint

Dive into the research topics of 'Functionalized Graphdiyne Nanowires: On-Surface Synthesis and Assessment of Band Structure, Flexibility, and Information Storage Potential'. Together they form a unique fingerprint.

Cite this