Functional Characterisation of ClpP Mutations Conferring Resistance to Acyldepsipeptide Antibiotics in Firmicutes

Imran T. Malik, Rebeca Pereira, Marie Theres Vielberg, Christian Mayer, Jan Straetener, Dhana Thomy, Kirsten Famulla, Helena Castro, Peter Sass, Michael Groll, Heike Brötz-Oesterhelt

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

Acyldepsipeptide (ADEP) is an exploratory antibiotic with a novel mechanism of action. ClpP, the proteolytic core of the caseinolytic protease, is deregulated towards unrestrained proteolysis. Here, we report on the mechanism of ADEP resistance in Firmicutes. This bacterial phylum contains important pathogens that are relevant for potential ADEP therapy. For Staphylococcus aureus, Bacillus subtilis, enterococci and streptococci, spontaneous ADEP-resistant mutants were selected in vitro at a rate of 10−6. All isolates carried mutations in clpP. All mutated S. aureus ClpP proteins characterised in this study were functionally impaired; this increased our understanding of the mode of operation of ClpP. For molecular insights, crystal structures of S. aureus ClpP bound to ADEP4 were determined. Well-resolved N-terminal domains in the apo structure allow the pore-gating mechanism to be followed. The compilation of mutations presented here indicates residues relevant for ClpP function and suggests that ADEP resistance will occur at a lower rate during the infection process.

Original languageEnglish
Pages (from-to)1997-2012
Number of pages16
JournalChemBioChem
Volume21
Issue number14
DOIs
StatePublished - 16 Jul 2020

Keywords

  • ADEP
  • ClpP
  • acyldepsipepide
  • antibiotics
  • natural products
  • protease

Fingerprint

Dive into the research topics of 'Functional Characterisation of ClpP Mutations Conferring Resistance to Acyldepsipeptide Antibiotics in Firmicutes'. Together they form a unique fingerprint.

Cite this