TY - JOUR
T1 - From the Lab to the Wild
T2 - Examining Generalizability of Video-based Mind Wandering Detection
AU - Bühler, Babette
AU - Bozkir, Efe
AU - Goldberg, Patricia
AU - Sümer, Ömer
AU - D’Mello, Sidney
AU - Gerjets, Peter
AU - Trautwein, Ulrich
AU - Kasneci, Enkelejda
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024
Y1 - 2024
N2 - Student’s shift of attention away from a current learning task to task-unrelated thought, also called mind wandering, occurs about 30% of the time spent on education-related activities. Its frequent occurrence has a negative effect on learning outcomes across learning tasks. Automated detection of mind wandering might offer an opportunity to assess the attentional state continuously and non-intrusively over time and hence enable large-scale research on learning materials and responding to inattention with targeted interventions. To achieve this, an accessible detection approach that performs well for various systems and settings is required. In this work, we explore a new, generalizable approach to video-based mind wandering detection that can be transferred to naturalistic settings across learning tasks. Therefore, we leverage two datasets, consisting of facial videos during reading in the lab (N = 135) and lecture viewing in-the-wild (N = 15). When predicting mind wandering, deep neural networks (DNN) and long short-term memory networks (LSTMs) achieve F1 scores of 0.44 (AUC-PR = 0.40) and 0.459 (AUC-PR = 0.39), above chance level, with latent features based on transfer-learning on the lab data. When exploring generalizability by training on the lab dataset and predicting on the in-the-wild dataset, BiLSTMs on latent features perform comparably to the state-of-the-art with an F1 score of 0.352 (AUC-PR = 0.26). Moreover, we investigate the fairness of predictive models across gender and show based on post-hoc explainability methods that employed latent features mainly encode information on eye and mouth areas. We discuss the benefits of generalizability and possible applications.
AB - Student’s shift of attention away from a current learning task to task-unrelated thought, also called mind wandering, occurs about 30% of the time spent on education-related activities. Its frequent occurrence has a negative effect on learning outcomes across learning tasks. Automated detection of mind wandering might offer an opportunity to assess the attentional state continuously and non-intrusively over time and hence enable large-scale research on learning materials and responding to inattention with targeted interventions. To achieve this, an accessible detection approach that performs well for various systems and settings is required. In this work, we explore a new, generalizable approach to video-based mind wandering detection that can be transferred to naturalistic settings across learning tasks. Therefore, we leverage two datasets, consisting of facial videos during reading in the lab (N = 135) and lecture viewing in-the-wild (N = 15). When predicting mind wandering, deep neural networks (DNN) and long short-term memory networks (LSTMs) achieve F1 scores of 0.44 (AUC-PR = 0.40) and 0.459 (AUC-PR = 0.39), above chance level, with latent features based on transfer-learning on the lab data. When exploring generalizability by training on the lab dataset and predicting on the in-the-wild dataset, BiLSTMs on latent features perform comparably to the state-of-the-art with an F1 score of 0.352 (AUC-PR = 0.26). Moreover, we investigate the fairness of predictive models across gender and show based on post-hoc explainability methods that employed latent features mainly encode information on eye and mouth areas. We discuss the benefits of generalizability and possible applications.
KW - Affective computing
KW - Educational technology
KW - Mind wandering
KW - Transfer-learning
UR - http://www.scopus.com/inward/record.url?scp=85196080195&partnerID=8YFLogxK
U2 - 10.1007/s40593-024-00412-2
DO - 10.1007/s40593-024-00412-2
M3 - Article
AN - SCOPUS:85196080195
SN - 1560-4292
JO - International Journal of Artificial Intelligence in Education
JF - International Journal of Artificial Intelligence in Education
ER -