TY - JOUR
T1 - From Powder to Sheets
T2 - A Comparative Electrolyte Study for Slurry-Based Processed Solid Electrolyte/Binder-Sheets as Separators in All-Solid-State Batteries
AU - Sedlmeier, Christian
AU - Kutsch, Tobias
AU - Schuster, Robin
AU - Hartmann, Louis
AU - Bublitz, Raphaela
AU - Tominac, Mia
AU - Bohn, Moritz
AU - Gasteiger, Hubert A.
N1 - Publisher Copyright:
© 2022 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.
PY - 2022/7
Y1 - 2022/7
N2 - A key for the market penetration of large-scale and high energy All-Solid-State Batteries (ASSBs) are sheet-type cell components. Herein, we report a slurry-based process to obtain free-standing solid electrolyte (SE)/binder composite sheets as ASSB separators. We investigate three different sulfidic solid electrolyte systems (Li6PS5Cl, Li7P3S11 and Li10SnP2S12) in combination with a hydrogenated nitrile butadiene rubber (HNBR). By means of electrochemical impedance spectroscopy (EIS), the influence of separator composition and processing on the ionic sheet conductivity is evaluated. Independent of the solid electrolyte material, a reduction by a factor of three compared to the pristine powder conductivity at 70 MPa operation pressure and by a factor of eight compared to the maximum powder conductivity is observed. This can be attributed to the addition of the ionically isolating binder, which however is necessary for the production of freestanding sheets. We show the beneficial effect of pre-compressing the sheets to little porosity values on the apparent sheet conductivity. Lastly, we investigate and decouple the influence of fabrication and operating cell pressure on the produced separator sheets.
AB - A key for the market penetration of large-scale and high energy All-Solid-State Batteries (ASSBs) are sheet-type cell components. Herein, we report a slurry-based process to obtain free-standing solid electrolyte (SE)/binder composite sheets as ASSB separators. We investigate three different sulfidic solid electrolyte systems (Li6PS5Cl, Li7P3S11 and Li10SnP2S12) in combination with a hydrogenated nitrile butadiene rubber (HNBR). By means of electrochemical impedance spectroscopy (EIS), the influence of separator composition and processing on the ionic sheet conductivity is evaluated. Independent of the solid electrolyte material, a reduction by a factor of three compared to the pristine powder conductivity at 70 MPa operation pressure and by a factor of eight compared to the maximum powder conductivity is observed. This can be attributed to the addition of the ionically isolating binder, which however is necessary for the production of freestanding sheets. We show the beneficial effect of pre-compressing the sheets to little porosity values on the apparent sheet conductivity. Lastly, we investigate and decouple the influence of fabrication and operating cell pressure on the produced separator sheets.
UR - http://www.scopus.com/inward/record.url?scp=85134816862&partnerID=8YFLogxK
U2 - 10.1149/1945-7111/ac7e76
DO - 10.1149/1945-7111/ac7e76
M3 - Article
AN - SCOPUS:85134816862
SN - 0013-4651
VL - 169
JO - Journal of the Electrochemical Society
JF - Journal of the Electrochemical Society
IS - 7
M1 - 070508
ER -