TY - JOUR
T1 - From Bench to Bedside—The Bad Berka Experience With First-in-Human Studies
AU - Zhang, Jingjing
AU - Singh, Aviral
AU - Kulkarni, Harshad R.
AU - Schuchardt, Christiane
AU - Müller, Dirk
AU - Wester, Hans J.
AU - Maina, Theodosia
AU - Rösch, F.
AU - van der Meulen, Nicholas P.
AU - Müller, Cristina
AU - Mäcke, Helmut
AU - Baum, Richard P.
N1 - Publisher Copyright:
© 2019
PY - 2019/9
Y1 - 2019/9
N2 - Precision oncology is being driven by rapid advances in novel diagnostics and therapeutic interventions, with treatments targeted to the needs of individual patients on the basis of genetic, biomarker, phenotypic, or psychosocial characteristics that distinguish a given patient from other patients with similar clinical presentations. Inherent in the theranostics paradigm is the assumption that diagnostic test results can precisely determine whether an individual is likely to benefit from a specific treatment. As part and integral in the current era of precision oncology, theranostics in the context of nuclear medicine aims to identify the appropriate molecular targets in neoplasms (diagnostic tool), so that the optimal ligands and radionuclides (therapeutic tool) with favorable labeling chemistry can be selected for personalized management of a specific disease, taking into consideration the specific patient, and subsequently monitor treatment response. Over the past two decades, the use of gallium-68 labeled peptides for somatostatin receptor (SSTR)-targeted PET/CT (or PET/MRI) imaging followed by lutetium-177 and yttrium-90 labeled SSTR-agonist for peptide receptor radionuclide therapy has demonstrated remarkable success in the management of neuroendocrine neoplasms, and paved the way to other indications of theranostics. Rapid advances are being made in the development of other peptide-based radiopharmaceuticals, small molecular-weight ligands and with newer radioisotopes with more favorable kinetics, potentially useful for theranostics strategies for the clinical application. The present review features the Bad Berka experience with first-in-human studies of new radiopharmaceuticals, for example, prostate-specific membrane antigen ligand, gastrin-releasing peptide receptor, neurotensin receptor 1 ligand, novel SSTR-targeting peptides and nonpeptide, and bone-seeking radiopharmaceuticals. Also new radioisotopes, for example, actinium (225Ac), copper (64Cu), scandium (44Sc), and terbium (152Tb/161Tb) will be discussed briefly demonstrating the development from basic science to precision oncology in the clinical setting.
AB - Precision oncology is being driven by rapid advances in novel diagnostics and therapeutic interventions, with treatments targeted to the needs of individual patients on the basis of genetic, biomarker, phenotypic, or psychosocial characteristics that distinguish a given patient from other patients with similar clinical presentations. Inherent in the theranostics paradigm is the assumption that diagnostic test results can precisely determine whether an individual is likely to benefit from a specific treatment. As part and integral in the current era of precision oncology, theranostics in the context of nuclear medicine aims to identify the appropriate molecular targets in neoplasms (diagnostic tool), so that the optimal ligands and radionuclides (therapeutic tool) with favorable labeling chemistry can be selected for personalized management of a specific disease, taking into consideration the specific patient, and subsequently monitor treatment response. Over the past two decades, the use of gallium-68 labeled peptides for somatostatin receptor (SSTR)-targeted PET/CT (or PET/MRI) imaging followed by lutetium-177 and yttrium-90 labeled SSTR-agonist for peptide receptor radionuclide therapy has demonstrated remarkable success in the management of neuroendocrine neoplasms, and paved the way to other indications of theranostics. Rapid advances are being made in the development of other peptide-based radiopharmaceuticals, small molecular-weight ligands and with newer radioisotopes with more favorable kinetics, potentially useful for theranostics strategies for the clinical application. The present review features the Bad Berka experience with first-in-human studies of new radiopharmaceuticals, for example, prostate-specific membrane antigen ligand, gastrin-releasing peptide receptor, neurotensin receptor 1 ligand, novel SSTR-targeting peptides and nonpeptide, and bone-seeking radiopharmaceuticals. Also new radioisotopes, for example, actinium (225Ac), copper (64Cu), scandium (44Sc), and terbium (152Tb/161Tb) will be discussed briefly demonstrating the development from basic science to precision oncology in the clinical setting.
UR - http://www.scopus.com/inward/record.url?scp=85068388713&partnerID=8YFLogxK
U2 - 10.1053/j.semnuclmed.2019.06.002
DO - 10.1053/j.semnuclmed.2019.06.002
M3 - Review article
C2 - 31470935
AN - SCOPUS:85068388713
SN - 0001-2998
VL - 49
SP - 422
EP - 437
JO - Seminars in Nuclear Medicine
JF - Seminars in Nuclear Medicine
IS - 5
ER -