TY - GEN
T1 - Frequency based model mixing for machine condition monitoring
AU - Krügel, Samuel
AU - Rixen, Daniel J.
N1 - Publisher Copyright:
© The Society for Experimental Mechanics, Inc. 2021
PY - 2021
Y1 - 2021
N2 - Creating holistic, efficient models for vibration-based monitoring applications containing rotor systems is still challenging. Reasons for these difficulties are application-dependent housing peripheries and inaccessible measurement points. Due to the complexity of these systems, numerical modeling is cumbersome and the application of experimental techniques only is restricted. With this contribution, we propose a solution approach for combining the experimental determined housing dynamics with a numerical rotor model. The method performs in the frequency domain, based on Lagrange Multiplier Frequency Based Substructuring (LM FBS) and System Equivalent Model Mixing (SEMM) as a closely related method. Our technique rests upon three parts: Firstly, a finite elements rotor model with reduced degrees of freedom (DoF) is created and the complete Frequency Response Function (FRF) matrix for all interface and input DoF is calculated. Secondly, the entire FRF-matrix is coupled with the simulatively determined transfer functions of the housing. Thirdly, FRFs of a collocated subset DoF of the rotor-assembly are experimentally measured. These are expanded to the FRF-matrix of the coupled model using the SEMM method. As a result, we get the complete FRF-matrix being full rank and containing dynamics of the entire, coupled system. Finally, the proposed methodology is experimentally validated based on an exemplary transfer function.
AB - Creating holistic, efficient models for vibration-based monitoring applications containing rotor systems is still challenging. Reasons for these difficulties are application-dependent housing peripheries and inaccessible measurement points. Due to the complexity of these systems, numerical modeling is cumbersome and the application of experimental techniques only is restricted. With this contribution, we propose a solution approach for combining the experimental determined housing dynamics with a numerical rotor model. The method performs in the frequency domain, based on Lagrange Multiplier Frequency Based Substructuring (LM FBS) and System Equivalent Model Mixing (SEMM) as a closely related method. Our technique rests upon three parts: Firstly, a finite elements rotor model with reduced degrees of freedom (DoF) is created and the complete Frequency Response Function (FRF) matrix for all interface and input DoF is calculated. Secondly, the entire FRF-matrix is coupled with the simulatively determined transfer functions of the housing. Thirdly, FRFs of a collocated subset DoF of the rotor-assembly are experimentally measured. These are expanded to the FRF-matrix of the coupled model using the SEMM method. As a result, we get the complete FRF-matrix being full rank and containing dynamics of the entire, coupled system. Finally, the proposed methodology is experimentally validated based on an exemplary transfer function.
KW - Condition monitoring
KW - Dynamic substructuring
KW - Experimental frequency based substructuring
KW - Hybrid modelling
KW - System equivalent model mixing
UR - http://www.scopus.com/inward/record.url?scp=85091602623&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-47630-4_15
DO - 10.1007/978-3-030-47630-4_15
M3 - Conference contribution
AN - SCOPUS:85091602623
SN - 9783030476298
T3 - Conference Proceedings of the Society for Experimental Mechanics Series
SP - 157
EP - 161
BT - Dynamic Substructures, Volume 4 - Proceedings of the 38th IMAC, A Conference and Exposition on Structural Dynamics, 2020
A2 - Linderholt, Andreas
A2 - Allen, Matt
A2 - D’Ambrogio, Walter
PB - Springer
T2 - 38th IMAC, A Conference and Exposition on Structural Dynamics, 2020
Y2 - 10 February 2020 through 13 February 2020
ER -