TY - JOUR
T1 - Freezing and thawing magnetic droplet solitons
AU - Ahlberg, Martina
AU - Chung, Sunjae
AU - Jiang, Sheng
AU - Frisk, Andreas
AU - Khademi, Maha
AU - Khymyn, Roman
AU - Awad, Ahmad A.
AU - Le, Q. Tuan
AU - Mazraati, Hamid
AU - Mohseni, Majid
AU - Weigand, Markus
AU - Bykova, Iuliia
AU - Groß, Felix
AU - Goering, Eberhard
AU - Schütz, Gisela
AU - Gräfe, Joachim
AU - Åkerman, Johan
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Magnetic droplets are non-topological magnetodynamical solitons displaying a wide range of complex dynamic phenomena with potential for microwave signal generation. Bubbles, on the other hand, are internally static cylindrical magnetic domains, stabilized by external fields and magnetostatic interactions. In its original theory, the droplet was described as an imminently collapsing bubble stabilized by spin transfer torque and, in its zero-frequency limit, as equivalent to a bubble. Without nanoscale lateral confinement, pinning, or an external applied field, such a nanobubble is unstable, and should collapse. Here, we show that we can freeze dynamic droplets into static nanobubbles by decreasing the magnetic field. While the bubble has virtually the same resistance as the droplet, all signs of low-frequency microwave noise disappear. The transition is fully reversible and the bubble can be thawed back into a droplet if the magnetic field is increased under current. Whereas the droplet collapses without a sustaining current, the bubble is highly stable and remains intact for days without external drive. Electrical measurements are complemented by direct observation using scanning transmission x-ray microscopy, which corroborates the analysis and confirms that the bubble is stabilized by pinning.
AB - Magnetic droplets are non-topological magnetodynamical solitons displaying a wide range of complex dynamic phenomena with potential for microwave signal generation. Bubbles, on the other hand, are internally static cylindrical magnetic domains, stabilized by external fields and magnetostatic interactions. In its original theory, the droplet was described as an imminently collapsing bubble stabilized by spin transfer torque and, in its zero-frequency limit, as equivalent to a bubble. Without nanoscale lateral confinement, pinning, or an external applied field, such a nanobubble is unstable, and should collapse. Here, we show that we can freeze dynamic droplets into static nanobubbles by decreasing the magnetic field. While the bubble has virtually the same resistance as the droplet, all signs of low-frequency microwave noise disappear. The transition is fully reversible and the bubble can be thawed back into a droplet if the magnetic field is increased under current. Whereas the droplet collapses without a sustaining current, the bubble is highly stable and remains intact for days without external drive. Electrical measurements are complemented by direct observation using scanning transmission x-ray microscopy, which corroborates the analysis and confirms that the bubble is stabilized by pinning.
UR - http://www.scopus.com/inward/record.url?scp=85129416482&partnerID=8YFLogxK
U2 - 10.1038/s41467-022-30055-7
DO - 10.1038/s41467-022-30055-7
M3 - Article
C2 - 35513369
AN - SCOPUS:85129416482
SN - 2041-1723
VL - 13
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 2462
ER -