TY - JOUR
T1 - Forecasting daily total pollen concentrations on a global scale
AU - Makra, László
AU - Coviello, Luca
AU - Gobbi, Andrea
AU - Jurman, Giuseppe
AU - Furlanello, Cesare
AU - Brunato, Mauro
AU - Ziska, Lewis H.
AU - Hess, Jeremy J.
AU - Damialis, Athanasios
AU - Garcia, Maria Pilar Plaza
AU - Tusnády, Gábor
AU - Czibolya, Lilit
AU - Ihász, István
AU - Deák, Áron József
AU - Mikó, Edit
AU - Dorner, Zita
AU - Harry, Susan K.
AU - Bruffaerts, Nicolas
AU - Packeu, Ann
AU - Saarto, Annika
AU - Toiviainen, Linnea
AU - Louna-Korteniemi, Maria
AU - Pätsi, Sanna
AU - Thibaudon, Michel
AU - Oliver, Gilles
AU - Charalampopoulos, Athanasios
AU - Vokou, Despoina
AU - Przedpelska-Wasowicz, Ewa Maria
AU - Guðjohnsen, Ellý Renée
AU - Bonini, Maira
AU - Celenk, Sevcan
AU - Ozaslan, Cumali
AU - Oh, Jae Won
AU - Sullivan, Krista
AU - Ford, Linda
AU - Kelly, Michelle
AU - Levetin, Estelle
AU - Myszkowska, Dorota
AU - Severova, Elena
AU - Gehrig, Regula
AU - Calderón-Ezquerro, María Del Carmen
AU - Guerra, César Guerrero
AU - Leiva-Guzmán, Manuel Andres
AU - Ramón, Germán Darío
AU - Barrionuevo, Laura Beatriz
AU - Peter, Jonny
AU - Berman, Dilys
AU - Katelaris, Connie H.
AU - Davies, Janet M.
AU - Burton, Pamela
AU - Beggs, Paul J.
AU - Vergamini, Sandra María
AU - Valencia-Barrera, Rosa María
AU - Traidl-Hoffmann, Claudia
N1 - Publisher Copyright:
© 2024 European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.
PY - 2024/8
Y1 - 2024/8
N2 - Background: There is evidence that global anthropogenic climate change may be impacting floral phenology and the temporal and spatial characteristics of aero-allergenic pollen. Given the extent of current and future climate uncertainty, there is a need to strengthen predictive pollen forecasts. Methods: The study aims to use CatBoost (CB) and deep learning (DL) models for predicting the daily total pollen concentration up to 14 days in advance for 23 cities, covering all five continents. The model includes the projected environmental parameters, recent concentrations (1, 2 and 4 weeks), and the past environmental explanatory variables, and their future values. Results: The best pollen forecasts include Mexico City (R2(DL_7) ≈.7), and Santiago (R2(DL_7) ≈.8) for the 7th forecast day, respectively; while the weakest pollen forecasts are made for Brisbane (R2(DL_7) ≈.4) and Seoul (R2(DL_7) ≈.1) for the 7th forecast day. The global order of the five most important environmental variables in determining the daily total pollen concentrations is, in decreasing order: the past daily total pollen concentration, future 2 m temperature, past 2 m temperature, past soil temperature in 28–100 cm depth, and past soil temperature in 0–7 cm depth. City-related clusters of the most similar distribution of feature importance values of the environmental variables only slightly change on consecutive forecast days for Caxias do Sul, Cape Town, Brisbane, and Mexico City, while they often change for Sydney, Santiago, and Busan. Conclusions: This new knowledge of the ecological relationships of the most remarkable variables importance for pollen forecast models according to clusters, cities and forecast days is important for developing and improving the accuracy of airborne pollen forecasts.
AB - Background: There is evidence that global anthropogenic climate change may be impacting floral phenology and the temporal and spatial characteristics of aero-allergenic pollen. Given the extent of current and future climate uncertainty, there is a need to strengthen predictive pollen forecasts. Methods: The study aims to use CatBoost (CB) and deep learning (DL) models for predicting the daily total pollen concentration up to 14 days in advance for 23 cities, covering all five continents. The model includes the projected environmental parameters, recent concentrations (1, 2 and 4 weeks), and the past environmental explanatory variables, and their future values. Results: The best pollen forecasts include Mexico City (R2(DL_7) ≈.7), and Santiago (R2(DL_7) ≈.8) for the 7th forecast day, respectively; while the weakest pollen forecasts are made for Brisbane (R2(DL_7) ≈.4) and Seoul (R2(DL_7) ≈.1) for the 7th forecast day. The global order of the five most important environmental variables in determining the daily total pollen concentrations is, in decreasing order: the past daily total pollen concentration, future 2 m temperature, past 2 m temperature, past soil temperature in 28–100 cm depth, and past soil temperature in 0–7 cm depth. City-related clusters of the most similar distribution of feature importance values of the environmental variables only slightly change on consecutive forecast days for Caxias do Sul, Cape Town, Brisbane, and Mexico City, while they often change for Sydney, Santiago, and Busan. Conclusions: This new knowledge of the ecological relationships of the most remarkable variables importance for pollen forecast models according to clusters, cities and forecast days is important for developing and improving the accuracy of airborne pollen forecasts.
KW - allergy
KW - artificial intelligence
KW - environmental variables
KW - feature importance cluster
KW - pollen forecast
UR - http://www.scopus.com/inward/record.url?scp=85198521687&partnerID=8YFLogxK
U2 - 10.1111/all.16227
DO - 10.1111/all.16227
M3 - Article
AN - SCOPUS:85198521687
SN - 0105-4538
VL - 79
SP - 2173
EP - 2185
JO - Allergy: European Journal of Allergy and Clinical Immunology
JF - Allergy: European Journal of Allergy and Clinical Immunology
IS - 8
ER -