Forecasting Characteristic 3D Poses of Human Actions

Christian Diller, Thomas Funkhouser, Angela Dai

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

We propose the task of forecasting characteristic 3d poses: from a short sequence observation of a person, predict a future 3d pose of that person in a likely action-defining, characteristic pose - for instance, from observing a person picking up an apple, predict the pose of the person eating the apple. Prior work on human motion prediction estimates future poses at fixed time intervals. Although easy to define, this frame-by-frame formulation confounds temporal and intentional aspects of human action. Instead, we define a semantically meaningful pose prediction task that decouples the predicted pose from time, taking inspiration from goal-directed behavior. To predict characteristic poses, we propose a probabilistic approach that models the possible multimodality in the distribution of likely characteristic poses. We then sample future pose hypotheses from the predicted distribution in an autoregressive fashion to model dependencies between joints. To evaluate our method, we construct a dataset of manually annotated characteristic 3d poses. Our experiments with this dataset suggest that our proposed probabilistic approach outperforms state-of-the-art methods by 26% on average.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PublisherIEEE Computer Society
Pages15893-15902
Number of pages10
ISBN (Electronic)9781665469463
DOIs
StatePublished - 2022
Event2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, United States
Duration: 19 Jun 202224 Jun 2022

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2022-June
ISSN (Print)1063-6919

Conference

Conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Country/TerritoryUnited States
CityNew Orleans
Period19/06/2224/06/22

Keywords

  • 3D from multi-view and sensors
  • Action and event recognition
  • RGBD sensors and analytics

Fingerprint

Dive into the research topics of 'Forecasting Characteristic 3D Poses of Human Actions'. Together they form a unique fingerprint.

Cite this