First steps to coupled hydraulic and mechanical calculations within a parameter study to define possible core designs for the conversion of FRM II

Kaltrina Shehu, Cezary Bojanowski, Aurelien Bergeron, Winfried Petry, Christian Reiter

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

The Forschungs-Neutronenquelle Heinz Meier-Leibnitz (FRM II) is actively participating in the worldwide efforts on developing high-density uranium fuels in order to reduce the enrichment of fuels used in high flux research reactors. This work is part of a parameter study to define possible compatible FRM II core designs for conversion. As a first step, a code-to-code verification is performed and experimental data is used for validation. The Gambill experiment was performed in the early 1960's in support of the HFIR program and provides results regarding the heat transfer coefficient and friction factors of water flowing through an electrically heated thin rectangular channel. A comparison is made between the Gambill Test and the results simulated by Ansys CFX and STAR-CCM+.

Original languageEnglish
Title of host publicationInternational Conference on Physics of Reactors
Subtitle of host publicationTransition to a Scalable Nuclear Future, PHYSOR 2020
EditorsMarat Margulis, Partrick Blaise
PublisherEDP Sciences - Web of Conferences
Pages1645-1659
Number of pages15
ISBN (Electronic)9781713827245
DOIs
StatePublished - 2020
Event2020 International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future, PHYSOR 2020 - Cambridge, United Kingdom
Duration: 28 Mar 20202 Apr 2020

Publication series

NameInternational Conference on Physics of Reactors: Transition to a Scalable Nuclear Future, PHYSOR 2020
Volume2020-March

Conference

Conference2020 International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future, PHYSOR 2020
Country/TerritoryUnited Kingdom
CityCambridge
Period28/03/202/04/20

Keywords

  • Code validation
  • Conversion
  • Research reactor

Fingerprint

Dive into the research topics of 'First steps to coupled hydraulic and mechanical calculations within a parameter study to define possible core designs for the conversion of FRM II'. Together they form a unique fingerprint.

Cite this