Finite-blocklength bounds for wiretap channels

Wei Yang, Rafael F. Schaefer, H. Vincent Poor

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

56 Scopus citations

Abstract

This paper investigates the maximal secrecy rate over a wiretap channel subject to reliability and secrecy constraints at a given blocklength. New achievability and converse bounds are derived, which are shown to be tighter than existing bounds. The bounds also lead to the tightest second-order coding rate for discrete memoryless and Gaussian wiretap channels.

Original languageEnglish
Title of host publicationProceedings - ISIT 2016; 2016 IEEE International Symposium on Information Theory
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3087-3091
Number of pages5
ISBN (Electronic)9781509018062
DOIs
StatePublished - 10 Aug 2016
Externally publishedYes
Event2016 IEEE International Symposium on Information Theory, ISIT 2016 - Barcelona, Spain
Duration: 10 Jul 201615 Jul 2016

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2016-August
ISSN (Print)2157-8095

Conference

Conference2016 IEEE International Symposium on Information Theory, ISIT 2016
Country/TerritorySpain
CityBarcelona
Period10/07/1615/07/16

Fingerprint

Dive into the research topics of 'Finite-blocklength bounds for wiretap channels'. Together they form a unique fingerprint.

Cite this