Fermi-surface reconstruction by stripe order in cuprate superconductors

F. Laliberté, J. Chang, N. Doiron-Leyraud, E. Hassinger, R. Daou, M. Rondeau, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, S. Pyon, T. Takayama, H. Takagi, I. Sheikin, L. Malone, C. Proust, K. Behnia, Louis Taillefer

Research output: Contribution to journalArticlepeer-review

149 Scopus citations

Abstract

The origin of pairing in a superconductor resides in the underlying normal state. In the cuprate high-temperature superconductor YBa2Cu 3Oy (YBCO), application of a magnetic field to suppress superconductivity reveals a ground state that appears to break the translational symmetry of the lattice, pointing to some density-wave order. Here we use a comparative study of thermoelectric transport in the cuprates YBCO and La 1.8-xEu0.2SrxCuO4(Eu-LSCO) to show that the two materials exhibit the same process of Fermi-surface reconstruction as a function of temperature and doping. The fact that in Eu-LSCO this reconstruction coexists with spin and charge modulations that break translational symmetry shows that stripe order is the generic non-superconducting ground state of hole-doped cuprates.

Original languageEnglish
Article number432
JournalNature Communications
Volume2
Issue number1
DOIs
StatePublished - 2011
Externally publishedYes

Fingerprint

Dive into the research topics of 'Fermi-surface reconstruction by stripe order in cuprate superconductors'. Together they form a unique fingerprint.

Cite this