TY - GEN
T1 - Feedback control to prevent damage by rotor rubbing after an impact load
AU - Ginzinger, Lucas
AU - Heckmann, Benjamin
AU - Ulbrich, Heinz
PY - 2009
Y1 - 2009
N2 - A new approach to control a rubbing rotor by applying an active auxiliary bearing has been developed. The control force is applied indirectly using the auxiliary bearing, only in case of rotor rubbing. The auxiliary bearing is actuated using two unidirectional actuators. A three-phase control strategy has been developed which stabilizes the rotor system in case of an impact load and effectively avoids "backward whirling" which is very destructive. As soon as the load ceased the auxiliary bearing is separated from the rotor again and normal operation mode is continued. During the normal operation state, the feedback control does not interfere with the rotor system at all. A test rig has been developed to experimentally verify the control system. Various experiments show the success of the control strategy. In case of rubbing, the contact forces are reduced up to 95 percent. At the same time, the rotor deflection is decreased too. The activation and deactivation of the control system is operated fully automatically. A simulation framework for an elastic rotor including the non-smooth nonlinear dynamics of contacts is presented, which has been used to develop the feedback controller.
AB - A new approach to control a rubbing rotor by applying an active auxiliary bearing has been developed. The control force is applied indirectly using the auxiliary bearing, only in case of rotor rubbing. The auxiliary bearing is actuated using two unidirectional actuators. A three-phase control strategy has been developed which stabilizes the rotor system in case of an impact load and effectively avoids "backward whirling" which is very destructive. As soon as the load ceased the auxiliary bearing is separated from the rotor again and normal operation mode is continued. During the normal operation state, the feedback control does not interfere with the rotor system at all. A test rig has been developed to experimentally verify the control system. Various experiments show the success of the control strategy. In case of rubbing, the contact forces are reduced up to 95 percent. At the same time, the rotor deflection is decreased too. The activation and deactivation of the control system is operated fully automatically. A simulation framework for an elastic rotor including the non-smooth nonlinear dynamics of contacts is presented, which has been used to develop the feedback controller.
UR - http://www.scopus.com/inward/record.url?scp=77953193930&partnerID=8YFLogxK
U2 - 10.1115/GT2009-60195
DO - 10.1115/GT2009-60195
M3 - Conference contribution
AN - SCOPUS:77953193930
SN - 9780791848876
T3 - Proceedings of the ASME Turbo Expo
SP - 1003
EP - 1012
BT - Proceedings of the ASME Turbo Expo 2009
T2 - 2009 ASME Turbo Expo
Y2 - 8 June 2009 through 12 June 2009
ER -