TY - GEN
T1 - FedLess
T2 - 2021 IEEE International Conference on Big Data, Big Data 2021
AU - Grafberger, Andreas
AU - Chadha, Mohak
AU - Jindal, Anshul
AU - Gu, Jianfeng
AU - Gerndt, Michael
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021
Y1 - 2021
N2 - The traditional cloud-centric approach for Deep Learning (DL) requires training data to be collected and processed at a central server which is often challenging in privacy-sensitive domains like healthcare. Towards this, a new learning paradigm called Federated Learning (FL) has been proposed that brings the potential of DL to these domains while addressing privacy and data ownership issues. FL enables clients to learn a shared ML model while keeping the data local. However, conventional FL systems face challenges such as scalability, complex infrastructure management, and wasted compute and incurred costs due to idle clients. These challenges of FL systems closely align with the core problems that serverless computing and Function-as-a-Service (FaaS) platforms aim to solve. These include rapid scalability, no infrastructure management, automatic scaling to zero for idle clients, and a pay-per-use billing model. To this end, we present a novel system and framework for serverless FL, called FedLess. Our system supports multiple commercial and self-hosted FaaS providers and can be deployed in the cloud, on-premise in institutional data centers, and on edge devices. To the best of our knowledge, we are the first to enable FL across a large fabric of heterogeneous FaaS providers while providing important features like security and Differential Privacy. We demonstrate with comprehensive experiments that the successful training of DNNs for different tasks across up to 200 client functions and more is easily possible using our system. Furthermore, we demonstrate the practical viability of our methodology by comparing it against a traditional FL system and show that it can be cheaper and more resource-efficient.
AB - The traditional cloud-centric approach for Deep Learning (DL) requires training data to be collected and processed at a central server which is often challenging in privacy-sensitive domains like healthcare. Towards this, a new learning paradigm called Federated Learning (FL) has been proposed that brings the potential of DL to these domains while addressing privacy and data ownership issues. FL enables clients to learn a shared ML model while keeping the data local. However, conventional FL systems face challenges such as scalability, complex infrastructure management, and wasted compute and incurred costs due to idle clients. These challenges of FL systems closely align with the core problems that serverless computing and Function-as-a-Service (FaaS) platforms aim to solve. These include rapid scalability, no infrastructure management, automatic scaling to zero for idle clients, and a pay-per-use billing model. To this end, we present a novel system and framework for serverless FL, called FedLess. Our system supports multiple commercial and self-hosted FaaS providers and can be deployed in the cloud, on-premise in institutional data centers, and on edge devices. To the best of our knowledge, we are the first to enable FL across a large fabric of heterogeneous FaaS providers while providing important features like security and Differential Privacy. We demonstrate with comprehensive experiments that the successful training of DNNs for different tasks across up to 200 client functions and more is easily possible using our system. Furthermore, we demonstrate the practical viability of our methodology by comparing it against a traditional FL system and show that it can be cheaper and more resource-efficient.
KW - Function-as-a-service (FaaS)
KW - deep learning
KW - federated learning
KW - serverless computing
UR - http://www.scopus.com/inward/record.url?scp=85125314922&partnerID=8YFLogxK
U2 - 10.1109/BigData52589.2021.9672067
DO - 10.1109/BigData52589.2021.9672067
M3 - Conference contribution
AN - SCOPUS:85125314922
T3 - Proceedings - 2021 IEEE International Conference on Big Data, Big Data 2021
SP - 164
EP - 173
BT - Proceedings - 2021 IEEE International Conference on Big Data, Big Data 2021
A2 - Chen, Yixin
A2 - Ludwig, Heiko
A2 - Tu, Yicheng
A2 - Fayyad, Usama
A2 - Zhu, Xingquan
A2 - Hu, Xiaohua Tony
A2 - Byna, Suren
A2 - Liu, Xiong
A2 - Zhang, Jianping
A2 - Pan, Shirui
A2 - Papalexakis, Vagelis
A2 - Wang, Jianwu
A2 - Cuzzocrea, Alfredo
A2 - Ordonez, Carlos
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 15 December 2021 through 18 December 2021
ER -