Fast reconstruction of accelerated dynamic MRI using manifold kernel regression

Kanwal K. Bhatia, Jose Caballero, Anthony N. Price, Ying Sun, Jo V. Hajnal, Daniel Rueckert

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations

Abstract

We present a novel method for fast reconstruction of dynamic MRI from undersampled k-space data, thus enabling highly accelerated acquisition. The method is based on kernel regression along the manifold structure of the sequence derived directly from k-space data. Unlike compressed sensing techniques which require solving a complex optimisation problem, our reconstruction is fast, taking under 5 seconds for a 30 frame sequence on conventional hardware. We demonstrate our method on 10 retrospectively undersampled cardiac cine MR sequences, showing improved performance over state-of-the-art compressed sensing.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer-Assisted Intervention – MICCAI 2015 - 18th International Conference, Proceedings
EditorsAlejandro F. Frangi, Nassir Navab, Joachim Hornegger, William M. Wells
PublisherSpringer Verlag
Pages510-518
Number of pages9
ISBN (Print)9783319245737
DOIs
StatePublished - 2015
Externally publishedYes
Event18th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015 - Munich, Germany
Duration: 5 Oct 20159 Oct 2015

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9351
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference18th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015
Country/TerritoryGermany
CityMunich
Period5/10/159/10/15

Fingerprint

Dive into the research topics of 'Fast reconstruction of accelerated dynamic MRI using manifold kernel regression'. Together they form a unique fingerprint.

Cite this