Fast MRI whole brain segmentation with fully convolutional neural networks

Abhijit Guha Roy, Sailesh Conjeti, Nassir Navab, Christian Wachinger

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Whole brain segmentation from structural MRI-T1 scan is a prerequisite for most morphological analyses, but requires hours of processing time and therefore delays the availability of image markers after scan acquisition. We introduced a fully convolution neural network (F-CNN) that segments a brain scan in several seconds [1]. Training deep F-CNNs for semantic image segmentation requires access to abundant labeled data.

Original languageEnglish
Title of host publicationInformatik aktuell
EditorsAndreas Maier, Thomas M. Deserno, Heinz Handels, Klaus H. Maier-Hein, Christoph Palm, Thomas Tolxdorff
PublisherSpringer Science and Business Media Deutschland GmbH
Pages42
Number of pages1
ISBN (Print)9783540295945, 9783540748366, 9783540853237, 9783642246579, 9783642337062, 9783642413087, 9783662451083, 9783662557846, 9783662565360, 9783662580950
DOIs
StatePublished - 2018
EventWorkshop on Bildverarbeitung fur die Medizin, 2018 - Erlangen, Germany
Duration: 11 Mar 201813 Mar 2018

Publication series

NameInformatik aktuell
Volume0
ISSN (Print)1431-472X

Conference

ConferenceWorkshop on Bildverarbeitung fur die Medizin, 2018
Country/TerritoryGermany
CityErlangen
Period11/03/1813/03/18

Fingerprint

Dive into the research topics of 'Fast MRI whole brain segmentation with fully convolutional neural networks'. Together they form a unique fingerprint.

Cite this