Fast mixing Markov chains for strongly rayleigh measures, DPPs, and constrained sampling

Research output: Contribution to journalConference articlepeer-review

29 Scopus citations

Abstract

We study probability measures induced by set functions with constraints. Such measures arise in a variety of real-world settings, where prior knowledge, resource limitations, or other pragmatic considerations impose constraints. We consider the task of rapidly sampling from such constrained measures, and develop fast Markov chain samplers for them. Our first main result is for MCMC sampling from Strongly Rayleigh (SR) measures, for which we present sharp polynomial bounds on the mixing time. As a corollary, this result yields a fast mixing sampler for Determinantal Point Processes (DPPs), yielding (to our knowledge) the first provably fast MCMC sampler for DPPs since their inception over four decades ago. Beyond SR measures, we develop MCMC samplers for probabilistic models with hard constraints and identify sufficient conditions under which their chains mix rapidly. We illustrate our claims by empirically verifying the dependence of mixing times on the key factors governing our theoretical bounds.

Original languageEnglish
Pages (from-to)4195-4203
Number of pages9
JournalAdvances in Neural Information Processing Systems
StatePublished - 2016
Externally publishedYes
Event30th Annual Conference on Neural Information Processing Systems, NIPS 2016 - Barcelona, Spain
Duration: 5 Dec 201610 Dec 2016

Fingerprint

Dive into the research topics of 'Fast mixing Markov chains for strongly rayleigh measures, DPPs, and constrained sampling'. Together they form a unique fingerprint.

Cite this