TY - JOUR
T1 - Fast mixing Markov chains for strongly rayleigh measures, DPPs, and constrained sampling
AU - Li, Chengtao
AU - Jegelka, Stefanie
AU - Sra, Suvrit
N1 - Publisher Copyright:
© 2016 NIPS Foundation - All Rights Reserved.
PY - 2016
Y1 - 2016
N2 - We study probability measures induced by set functions with constraints. Such measures arise in a variety of real-world settings, where prior knowledge, resource limitations, or other pragmatic considerations impose constraints. We consider the task of rapidly sampling from such constrained measures, and develop fast Markov chain samplers for them. Our first main result is for MCMC sampling from Strongly Rayleigh (SR) measures, for which we present sharp polynomial bounds on the mixing time. As a corollary, this result yields a fast mixing sampler for Determinantal Point Processes (DPPs), yielding (to our knowledge) the first provably fast MCMC sampler for DPPs since their inception over four decades ago. Beyond SR measures, we develop MCMC samplers for probabilistic models with hard constraints and identify sufficient conditions under which their chains mix rapidly. We illustrate our claims by empirically verifying the dependence of mixing times on the key factors governing our theoretical bounds.
AB - We study probability measures induced by set functions with constraints. Such measures arise in a variety of real-world settings, where prior knowledge, resource limitations, or other pragmatic considerations impose constraints. We consider the task of rapidly sampling from such constrained measures, and develop fast Markov chain samplers for them. Our first main result is for MCMC sampling from Strongly Rayleigh (SR) measures, for which we present sharp polynomial bounds on the mixing time. As a corollary, this result yields a fast mixing sampler for Determinantal Point Processes (DPPs), yielding (to our knowledge) the first provably fast MCMC sampler for DPPs since their inception over four decades ago. Beyond SR measures, we develop MCMC samplers for probabilistic models with hard constraints and identify sufficient conditions under which their chains mix rapidly. We illustrate our claims by empirically verifying the dependence of mixing times on the key factors governing our theoretical bounds.
UR - http://www.scopus.com/inward/record.url?scp=85019188717&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85019188717
SN - 1049-5258
SP - 4195
EP - 4203
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 30th Annual Conference on Neural Information Processing Systems, NIPS 2016
Y2 - 5 December 2016 through 10 December 2016
ER -