Fast Frontier-based Information-driven Autonomous Exploration with an MAV

Anna Dai, Sotiris Papatheodorou, Nils Funk, Dimos Tzoumanikas, Stefan Leutenegger

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

71 Scopus citations

Abstract

Exploration and collision-free navigation through an unknown environment is a fundamental task for autonomous robots. In this paper, a novel exploration strategy for Micro Aerial Vehicles (MAVs) is presented. The goal of the exploration strategy is the reduction of map entropy regarding occupancy probabilities, which is reflected in a utility function to be maximised. We achieve fast and efficient exploration performance with tight integration between our octree-based occupancy mapping approach, frontier extraction, and motion planning-as a hybrid between frontier-based and sampling-based exploration methods. The computationally expensive frontier clustering employed in classic frontier-based exploration is avoided by exploiting the implicit grouping of frontier voxels in the underlying octree map representation. Candidate next-views are sampled from the map frontiers and are evaluated using a utility function combining map entropy and travel time, where the former is computed efficiently using sparse raycasting. These optimisations along with the targeted exploration of frontier-based methods result in a fast and computationally efficient exploration planner. The proposed method is evaluated using both simulated and real-world experiments, demonstrating clear advantages over state-of-the-art approaches.

Original languageEnglish
Title of host publication2020 IEEE International Conference on Robotics and Automation, ICRA 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages9570-9576
Number of pages7
ISBN (Electronic)9781728173955
DOIs
StatePublished - May 2020
Externally publishedYes
Event2020 IEEE International Conference on Robotics and Automation, ICRA 2020 - Paris, France
Duration: 31 May 202031 Aug 2020

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2020 IEEE International Conference on Robotics and Automation, ICRA 2020
Country/TerritoryFrance
CityParis
Period31/05/2031/08/20

Keywords

  • Aerial Systems: Perception and Autonomy
  • Visual-Based Navigation

Fingerprint

Dive into the research topics of 'Fast Frontier-based Information-driven Autonomous Exploration with an MAV'. Together they form a unique fingerprint.

Cite this