TY - GEN
T1 - Fast exact toffoli network synthesis of reversible logic
AU - Wille, Robert
AU - Große, Daniel
PY - 2007
Y1 - 2007
N2 - The research in the field of reversible logic is motivated by its application in low-power design, optical computing and quantum computing. Hence synthesis of reversible logic has become a very important research area in the last years. In this paper exact algorithms for the synthesis of generalized Toffoli networks are considered. We present an improvement of an existing synthesis approach that is based on Boolean Satisfiability. Furthermore, the principle limits of the original and the improved approach are shown. Then, we propose a new method using problem specific knowledge during the synthesis process to overcome these limits. Experimental results demonstrate improvements of the overall synthesis time up to four orders of magnitude.
AB - The research in the field of reversible logic is motivated by its application in low-power design, optical computing and quantum computing. Hence synthesis of reversible logic has become a very important research area in the last years. In this paper exact algorithms for the synthesis of generalized Toffoli networks are considered. We present an improvement of an existing synthesis approach that is based on Boolean Satisfiability. Furthermore, the principle limits of the original and the improved approach are shown. Then, we propose a new method using problem specific knowledge during the synthesis process to overcome these limits. Experimental results demonstrate improvements of the overall synthesis time up to four orders of magnitude.
UR - http://www.scopus.com/inward/record.url?scp=50249129397&partnerID=8YFLogxK
U2 - 10.1109/ICCAD.2007.4397244
DO - 10.1109/ICCAD.2007.4397244
M3 - Conference contribution
AN - SCOPUS:50249129397
SN - 1424413826
SN - 9781424413829
T3 - IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
SP - 60
EP - 64
BT - 2007 IEEE/ACM International Conference on Computer-Aided Design, ICCAD
T2 - 2007 IEEE/ACM International Conference on Computer-Aided Design, ICCAD
Y2 - 4 November 2007 through 8 November 2007
ER -