Fast and Succinct Population Protocols for Presburger Arithmetic

Philipp Czerner, Roland Guttenberg, Martin Helfrich, Javier Esparza

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

In their 2006 seminal paper in Distributed Computing, Angluin et al. present a construction that, given any Presburger predicate as input, outputs a leaderless population protocol that decides the predicate. The protocol for a predicate of size m (when expressed as a Boolean combination of threshold and remainder predicates with coefficients in binary) runs in O(m · n2 log n) expected number of interactions, which is almost optimal in n, the number of interacting agents. However, the number of states of the protocol is exponential in m. This is a problem for natural computing applications, where a state corresponds to a chemical species and it is difficult to implement protocols with many states. Blondin et al. described in STACS 2020 another construction that produces protocols with a polynomial number of states, but exponential expected number of interactions. We present a construction that produces protocols with O(m) states that run in expected O(m7 · n2) interactions, optimal in n, for all inputs of size Ω(m). For this, we introduce population computers, a carefully crafted generalization of population protocols easier to program, and show that our computers for Presburger predicates can be translated into fast and succinct population protocols.

Original languageEnglish
Title of host publication1st Symposium on Algorithmic Foundations of Dynamic Networks, SAND 2022
EditorsJames Aspnes, Othon Michail
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959772242
DOIs
StatePublished - 1 Apr 2022
Event1st Symposium on Algorithmic Foundations of Dynamic Networks, SAND 2022 - Virtual, Online
Duration: 28 Mar 202230 Mar 2022

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume221
ISSN (Print)1868-8969

Conference

Conference1st Symposium on Algorithmic Foundations of Dynamic Networks, SAND 2022
CityVirtual, Online
Period28/03/2230/03/22

Keywords

  • fast
  • population computers
  • population protocols
  • succinct

Fingerprint

Dive into the research topics of 'Fast and Succinct Population Protocols for Presburger Arithmetic'. Together they form a unique fingerprint.

Cite this