Fast and Scalable Network Slicing by Integrating Deep Learning with Lagrangian Methods

Tianlun Hu, Qi Liao, Qiang Liu, Antonio Massaro, Georg Carle

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Network slicing is a key technique in 5G and beyond for efficiently supporting diverse services. Many network slicing solutions rely on deep learning to manage complex and high-dimensional resource allocation problems. However, deep learning models suffer limited generalization and adaptability to dynamic slicing configurations. In this paper, we propose a novel frame-work that integrates constrained optimization methods and deep learning models, resulting in strong generalization and superior approximation capability. Based on the proposed framework, we design a new neural-assisted algorithm to allocate radio resources to slices to maximize the network utility under inter-slice resource constraints. The algorithm exhibits high scalability, accommodating varying numbers of slices and slice configurations with ease. We implement the proposed solution in a system-level network simulator and evaluate its performance extensively by comparing it to state-of-the-art solutions including deep reinforcement learning approaches. The numerical results show that our solution obtains near-optimal quality-of-service satisfaction and promising generalization performance under different network slicing scenarios.

Original languageEnglish
Title of host publicationGLOBECOM 2023 - 2023 IEEE Global Communications Conference
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6346-6351
Number of pages6
ISBN (Electronic)9798350310900
DOIs
StatePublished - 2023
Event2023 IEEE Global Communications Conference, GLOBECOM 2023 - Kuala Lumpur, Malaysia
Duration: 4 Dec 20238 Dec 2023

Publication series

NameProceedings - IEEE Global Communications Conference, GLOBECOM
ISSN (Print)2334-0983
ISSN (Electronic)2576-6813

Conference

Conference2023 IEEE Global Communications Conference, GLOBECOM 2023
Country/TerritoryMalaysia
CityKuala Lumpur
Period4/12/238/12/23

Fingerprint

Dive into the research topics of 'Fast and Scalable Network Slicing by Integrating Deep Learning with Lagrangian Methods'. Together they form a unique fingerprint.

Cite this