Abstract
The extracellular matrix (ECM) facilitates pancreatic cancer cells survival, which is of central importance for pancreatic adenocarcinoma that is highly fibrotic. Here, we show that reactive oxygen species (ROS) mediate the prosurvival effect of ECM in human pancreatic cancer cells. Fibronectin and laminin stimulated ROS production and NADPH oxidase activation in pancreatic cancer cells. Both pharmacological and molecular approaches show that fibronectin stimulated ROS production through activation of NADPH oxidase and NADPH oxidase-independent pathways and that 5-lipoxygenase (5-LO) mediates both these pathways. Analyses of the mechanisms of ROS production by ECM proteins and growth factors indicate that activation of NADPH oxidase (Nox4) is a common mechanism employed both by ECM proteins and growth factors to increase ROS in pancreatic cancer cells. We also found that Nox4 is present in human pancreatic adenocarcinoma tissues and that these tissues display membrane NADPH oxidase activity. ECM proteins and growth factors activate NADPH oxidase through different mechanisms; in contrast to ECM proteins, growth factors activate NADPH oxidase through 5-LO-independent mechanisms. Inhibition of 5-LO or NADPH oxidase with pharmacological inhibitors of these enzymes and with Nox4 or 5-LO antisense oligonucleotides markedly stimulated apoptosis in cancer cells cultured on fibronectin. Our results indicate that ROS generation via 5-LO and downstream NADPH oxidase mediates the prosurvival effect of ECM in pancreatic cancer cells. These mechanisms may play an important role in pancreatic cancer resistance to treatments and thus represent novel therapeutic targets.
Original language | English |
---|---|
Pages (from-to) | G1137-G1147 |
Journal | American Journal of Physiology - Gastrointestinal and Liver Physiology |
Volume | 289 |
Issue number | 6 52-6 |
DOIs | |
State | Published - Dec 2005 |
Externally published | Yes |
Keywords
- Pancreas