TY - GEN
T1 - Extended Bayesian information criteria for Gaussian graphical models
AU - Foygel, Rina
AU - Drton, Mathias
PY - 2010
Y1 - 2010
N2 - Gaussian graphical models with sparsity in the inverse covariance matrix are of significant interest in many modern applications. For the problem of recovering the graphical structure, information criteria provide useful optimization objectives for algorithms searching through sets of graphs or for selection of tuning parameters of other methods such as the graphical lasso, which is a likelihood penalization technique. In this paper we establish the consistency of an extended Bayesian information criterion for Gaussian graphical models in a scenario where both the number of variables p and the sample size n grow. Compared to earlier work on the regression case, our treatment allows for growth in the number of non-zero parameters in the true model, which is necessary in order to cover connected graphs. We demonstrate the performance of this criterion on simulated data when used in conjunction with the graphical lasso, and verify that the criterion indeed performs better than either cross-validation or the ordinary Bayesian information criterion when p and the number of non-zero parameters q both scale with n.
AB - Gaussian graphical models with sparsity in the inverse covariance matrix are of significant interest in many modern applications. For the problem of recovering the graphical structure, information criteria provide useful optimization objectives for algorithms searching through sets of graphs or for selection of tuning parameters of other methods such as the graphical lasso, which is a likelihood penalization technique. In this paper we establish the consistency of an extended Bayesian information criterion for Gaussian graphical models in a scenario where both the number of variables p and the sample size n grow. Compared to earlier work on the regression case, our treatment allows for growth in the number of non-zero parameters in the true model, which is necessary in order to cover connected graphs. We demonstrate the performance of this criterion on simulated data when used in conjunction with the graphical lasso, and verify that the criterion indeed performs better than either cross-validation or the ordinary Bayesian information criterion when p and the number of non-zero parameters q both scale with n.
UR - http://www.scopus.com/inward/record.url?scp=85162049728&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85162049728
SN - 9781617823800
T3 - Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010
BT - Advances in Neural Information Processing Systems 23
PB - Neural Information Processing Systems
T2 - 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010
Y2 - 6 December 2010 through 9 December 2010
ER -