Exponent Relaxation of Polynomial Zonotopes and Its Applications in Formal Neural Network Verification

Tobias Ladner, Matthias Althoff

Research output: Contribution to journalConference articlepeer-review

Abstract

Formal verification of neural networks is a challenging problem due to the complexity and nonlinearity of neural networks. It has been shown that polynomial zonotopes can tightly enclose the output set of a neural network. Unfortunately, the tight enclosure comes with additional complexity in the set representation, thus, rendering subsequent operations expensive to compute, such as computing interval bounds and intersection checking. To address this issue, we present a novel approach to restructure a polynomial zonotope to tightly enclose the original polynomial zonotope while drastically reducing its complexity. The restructuring is achieved by relaxing the exponents of the dependent factors of polynomial zonotopes and finding an appropriate approximation error. We demonstrate the applicability of our approach on output sets of neural networks, where we obtain tighter results in various subsequent operations, such as order reduction, zonotope enclosure, and range bounding.

Original languageEnglish
Pages (from-to)21304-21311
Number of pages8
JournalProceedings of the AAAI Conference on Artificial Intelligence
Volume38
Issue number19
DOIs
StatePublished - 25 Mar 2024
Event38th AAAI Conference on Artificial Intelligence, AAAI 2024 - Vancouver, Canada
Duration: 20 Feb 202427 Feb 2024

Fingerprint

Dive into the research topics of 'Exponent Relaxation of Polynomial Zonotopes and Its Applications in Formal Neural Network Verification'. Together they form a unique fingerprint.

Cite this