TY - JOUR
T1 - Exploring the random phase approximation
T2 - Application to CO adsorbed on Cu(111)
AU - Ren, Xinguo
AU - Rinke, Patrick
AU - Scheffler, Matthias
PY - 2009/8/6
Y1 - 2009/8/6
N2 - The adsorption of CO on the Cu(111) surface is investigated in the random phase approximation (RPA) as formulated within the adiabatic connection fluctuation-dissipation theorem. The RPA adsorption energy is obtained by adding a "local exchange-correlation correction" that is extrapolated from cluster calculations of increasing size, to the Perdew-Burke-Ernzerhof (PBE) value for the extended system. In comparison to density-functional theory calculations with the generalized gradient functionals PBE and AM05 and the hybrid functionals PBE0 and HSE03, we find a hierarchy of improved performance from AM05/PBE to PBE0/HSE03, and from PBE0/HSE03 to RPA, both in terms of the absolute adsorption energy as well as the adsorption-energy difference between the atop and the hollow fcc sites. In particular, the very weak atop site preference at the PBE0/HSE03 level is further stabilized by about 0.2 eV in the RPA. The mechanism behind this improvement is analyzed in terms of the GW density of states that gives a spectral representation en par with the RPA formalism for the total energy.
AB - The adsorption of CO on the Cu(111) surface is investigated in the random phase approximation (RPA) as formulated within the adiabatic connection fluctuation-dissipation theorem. The RPA adsorption energy is obtained by adding a "local exchange-correlation correction" that is extrapolated from cluster calculations of increasing size, to the Perdew-Burke-Ernzerhof (PBE) value for the extended system. In comparison to density-functional theory calculations with the generalized gradient functionals PBE and AM05 and the hybrid functionals PBE0 and HSE03, we find a hierarchy of improved performance from AM05/PBE to PBE0/HSE03, and from PBE0/HSE03 to RPA, both in terms of the absolute adsorption energy as well as the adsorption-energy difference between the atop and the hollow fcc sites. In particular, the very weak atop site preference at the PBE0/HSE03 level is further stabilized by about 0.2 eV in the RPA. The mechanism behind this improvement is analyzed in terms of the GW density of states that gives a spectral representation en par with the RPA formalism for the total energy.
UR - http://www.scopus.com/inward/record.url?scp=68949116680&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.80.045402
DO - 10.1103/PhysRevB.80.045402
M3 - Article
AN - SCOPUS:68949116680
SN - 1098-0121
VL - 80
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 4
M1 - 045402
ER -