Exploring the no-show paradox for condorcet extensions using ehrhart theory and computer simulations

Felix Brandt, Johannes Hofbauer, Martin Strobel

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

Results from voting theory are increasingly used when dealing with collective decision making in computational multiagent systems. An important and surprising phenomenon in voting theory is the No-Show Paradox (NSP), which occurs if a voter is better off by abstaining from an election. While it is known that certain voting rules suffer from this paradox in principle, the extent to which it is of practical concern is not well understood. We aim at filling this gap by analyzing the likelihood of the NSP for six Condorcet extensions (Black's rule, Baldwin's rule, Nanson's rule, MaxiMin, Tideman's rule, and Copeland's rule) under various preference models using Ehrhart theory as well as extensive computer simulations. We find that, for few alternatives, the probability of the NSP is rather small (less than 4% for four alternatives and all considered preference models, except for Copeland's rule). As the number of alternatives increases, the NSP becomes much more likely and which rule is most susceptible to abstention strongly depends on the underlying distribution of preferences.

Original languageEnglish
Title of host publication18th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2019
PublisherInternational Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS)
Pages520-528
Number of pages9
ISBN (Electronic)9781510892002
StatePublished - 2019
Event18th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2019 - Montreal, Canada
Duration: 13 May 201917 May 2019

Publication series

NameProceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS
Volume1
ISSN (Print)1548-8403
ISSN (Electronic)1558-2914

Conference

Conference18th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2019
Country/TerritoryCanada
CityMontreal
Period13/05/1917/05/19

Fingerprint

Dive into the research topics of 'Exploring the no-show paradox for condorcet extensions using ehrhart theory and computer simulations'. Together they form a unique fingerprint.

Cite this