TY - JOUR
T1 - Exploring the microbial biotransformation of extraterrestrial material on nanometer scale
AU - Milojevic, Tetyana
AU - Kölbl, Denise
AU - Ferrière, Ludovic
AU - Albu, Mihaela
AU - Kish, Adrienne
AU - Flemming, Roberta L.
AU - Koeberl, Christian
AU - Blazevic, Amir
AU - Zebec, Ziga
AU - Rittmann, Simon K.M.R.
AU - Schleper, Christa
AU - Pignitter, Marc
AU - Somoza, Veronika
AU - Schimak, Mario P.
AU - Rupert, Alexandra N.
N1 - Publisher Copyright:
© 2019, The Author(s).
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Exploration of microbial-meteorite redox interactions highlights the possibility of bioprocessing of extraterrestrial metal resources and reveals specific microbial fingerprints left on extraterrestrial material. In the present study, we provide our observations on a microbial-meteorite nanoscale interface of the metal respiring thermoacidophile Metallosphaera sedula. M. sedula colonizes the stony meteorite Northwest Africa 1172 (NWA 1172; an H5 ordinary chondrite) and releases free soluble metals, with Ni ions as the most solubilized. We show the redox route of Ni ions, originating from the metallic Ni° of the meteorite grains and leading to released soluble Ni2+. Nanoscale resolution ultrastructural studies of meteorite grown M. sedula coupled to electron energy loss spectroscopy (EELS) points to the redox processing of Fe-bearing meteorite material. Our investigations validate the ability of M. sedula to perform the biotransformation of meteorite minerals, unravel microbial fingerprints left on meteorite material, and provide the next step towards an understanding of meteorite biogeochemistry. Our findings will serve in defining mineralogical and morphological criteria for the identification of metal-containing microfossils.
AB - Exploration of microbial-meteorite redox interactions highlights the possibility of bioprocessing of extraterrestrial metal resources and reveals specific microbial fingerprints left on extraterrestrial material. In the present study, we provide our observations on a microbial-meteorite nanoscale interface of the metal respiring thermoacidophile Metallosphaera sedula. M. sedula colonizes the stony meteorite Northwest Africa 1172 (NWA 1172; an H5 ordinary chondrite) and releases free soluble metals, with Ni ions as the most solubilized. We show the redox route of Ni ions, originating from the metallic Ni° of the meteorite grains and leading to released soluble Ni2+. Nanoscale resolution ultrastructural studies of meteorite grown M. sedula coupled to electron energy loss spectroscopy (EELS) points to the redox processing of Fe-bearing meteorite material. Our investigations validate the ability of M. sedula to perform the biotransformation of meteorite minerals, unravel microbial fingerprints left on meteorite material, and provide the next step towards an understanding of meteorite biogeochemistry. Our findings will serve in defining mineralogical and morphological criteria for the identification of metal-containing microfossils.
UR - http://www.scopus.com/inward/record.url?scp=85075910637&partnerID=8YFLogxK
U2 - 10.1038/s41598-019-54482-7
DO - 10.1038/s41598-019-54482-7
M3 - Article
C2 - 31792265
AN - SCOPUS:85075910637
VL - 9
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 18028
ER -