Exploring heritability of functional brain networks with inexact graph matching

Sofia Ira Ktena, Salim Arslan, Sarah Parisot, Daniel Rueckert

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Data-driven brain parcellations aim to provide a more accurate representation of an individual's functional connectivity, since they are able to capture individual variability that arises due to development or disease. This renders comparisons between the emerging brain connectivity networks more challenging, since correspondences between their elements are not preserved. Unveiling these correspondences is of major importance to keep track of local functional connectivity changes. We propose a novel method based on graph edit distance for the comparison of brain graphs directly in their domain, that can accurately reflect similarities between individual networks while providing the network element correspondences. This method is validated on a dataset of 116 twin subjects provided by the Human Connectome Project.

Original languageEnglish
Title of host publication2017 IEEE 14th International Symposium on Biomedical Imaging, ISBI 2017
PublisherIEEE Computer Society
Pages354-357
Number of pages4
ISBN (Electronic)9781509011711
DOIs
StatePublished - 15 Jun 2017
Externally publishedYes
Event14th IEEE International Symposium on Biomedical Imaging, ISBI 2017 - Melbourne, Australia
Duration: 18 Apr 201721 Apr 2017

Publication series

NameProceedings - International Symposium on Biomedical Imaging
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Conference

Conference14th IEEE International Symposium on Biomedical Imaging, ISBI 2017
Country/TerritoryAustralia
CityMelbourne
Period18/04/1721/04/17

Keywords

  • Functional brain connectivity
  • Graph matching
  • Twin study

Fingerprint

Dive into the research topics of 'Exploring heritability of functional brain networks with inexact graph matching'. Together they form a unique fingerprint.

Cite this