Exploiting Segmentation Labels and Representation Learning to Forecast Therapy Response of PDAC Patients

Alexander Ziller, Ayhan Can Erdur, Friederike Jungmann, Daniel Rueckert, Rickmer Braren, Georgios Kaissis

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The prediction of pancreatic ductal adenocarcinoma therapy response is a clinically challenging and important task in this high-mortality tumour entity. The training of neural networks able to tackle this challenge is impeded by a lack of large datasets and the difficult anatomical localisation of the pancreas. Here, we propose a hybrid deep neural network pipeline to predict tumour response to initial chemotherapy which is based on the Response Evaluation Criteria in Solid Tumors (RECIST) score, a standardised method for cancer response evaluation by clinicians as well as tumour markers, and clinical evaluation of the patients. We leverage a combination of representation transfer from segmentation to classification, as well as localisation and representation learning. Our approach yields a remarkably data-efficient method able to predict treatment response with a ROC-AUC of 63.7% using only 477 datasets in total.

Original languageEnglish
Title of host publication2023 IEEE International Symposium on Biomedical Imaging, ISBI 2023
PublisherIEEE Computer Society
ISBN (Electronic)9781665473583
DOIs
StatePublished - 2023
Externally publishedYes
Event20th IEEE International Symposium on Biomedical Imaging, ISBI 2023 - Cartagena, Colombia
Duration: 18 Apr 202321 Apr 2023

Publication series

NameProceedings - International Symposium on Biomedical Imaging
Volume2023-April
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Conference

Conference20th IEEE International Symposium on Biomedical Imaging, ISBI 2023
Country/TerritoryColombia
CityCartagena
Period18/04/2321/04/23

Keywords

  • PDAC
  • personalised treatment
  • representation learning
  • transfer learning

Fingerprint

Dive into the research topics of 'Exploiting Segmentation Labels and Representation Learning to Forecast Therapy Response of PDAC Patients'. Together they form a unique fingerprint.

Cite this