Exploiting Elastic Energy Storage for Blind Cyclic Manipulation: Modeling, Stability Analysis, Control, and Experiments for Dribbling

Sami Haddadin, Kai Krieger, Alin Albu-Schaffer, Torsten Lilge

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

For creating robots that are capable of human-like performance in terms of speed, energetic properties, and robustness, intrinsic compliance is a promising design element. In this paper, we investigate the principle effects of elastic energy storage and release for basketball dribbling in terms of open-loop cycle stability. We base the analysis, which is performed for the 1-degree-of-freedom (DoF) case, on error propagation, peak power performance during hand contact, and robustness with respect to varying hand stiffness. As the ball can only be controlled during contact, an intrinsically elastic hand extends the contact time and improves the energetic characteristics of the process. To back up our basic insights, we extend the 1-DoF controller to 6-DoFs and show how passive compliance can be exploited for a 6-DoF cyclic ball dribbling task with a 7-DoF articulated Cartesian impedance controlled robot. As a human is able to dribble blindly, we decided to focus on the case of contact force sensing only, i.e., no visual information is necessary in our approach. We show via simulation and experiment that it is possible to achieve a stable dynamic cycle based on the 1-DoF analysis for the primary vertical axis together with control strategies for the secondary translations and rotations of the task. The scheme allows also the continuous tracking of a desired dribbling height and horizontal position. The approach is also used to hypothesize about human dribbling and is validated with captured data.

Original languageEnglish
Article number8263400
Pages (from-to)91-112
Number of pages22
JournalIEEE Transactions on Robotics
Volume34
Issue number1
DOIs
StatePublished - Feb 2018
Externally publishedYes

Keywords

  • Cycle stability analysis
  • disturbance observer
  • elastic energy storage
  • flexible joint manipulators
  • limit cycles
  • variable stiffness actuation

Fingerprint

Dive into the research topics of 'Exploiting Elastic Energy Storage for Blind Cyclic Manipulation: Modeling, Stability Analysis, Control, and Experiments for Dribbling'. Together they form a unique fingerprint.

Cite this