@inproceedings{63539ed78db24939bae4ec9cde1d55e9,
title = "Explaining COVID-19 and Thoracic Pathology Model Predictions by Identifying Informative Input Features",
abstract = "Neural networks have demonstrated remarkable performance in classification and regression tasks on chest X-rays. In order to establish trust in the clinical routine, the networks{\textquoteright} prediction mechanism needs to be interpretable. One principal approach to interpretation is feature attribution. Feature attribution methods identify the importance of input features for the output prediction. Building on Information Bottleneck Attribution (IBA) method, for each prediction we identify the chest X-ray regions that have high mutual information with the network{\textquoteright}s output. Original IBA identifies input regions that have sufficient predictive information. We propose Inverse IBA to identify all informative regions. Thus all predictive cues for pathologies are highlighted on the X-rays, a desirable property for chest X-ray diagnosis. Moreover, we propose Regression IBA for explaining regression models. Using Regression IBA we observe that a model trained on cumulative severity score labels implicitly learns the severity of different X-ray regions. Finally, we propose Multi-layer IBA to generate higher resolution and more detailed attribution/saliency maps. We evaluate our methods using both human-centric (ground-truth-based) interpretability metrics, and human-agnostic feature importance metrics on NIH Chest X-ray8 and BrixIA datasets. The code (https://github.com/CAMP-eXplain-AI/CheXplain-IBA ) is publicly available.",
keywords = "Chest X-rays, Covid, Explainable AI, Feature attribution",
author = "Ashkan Khakzar and Yang Zhang and Wejdene Mansour and Yuezhi Cai and Yawei Li and Yucheng Zhang and Kim, {Seong Tae} and Nassir Navab",
note = "Publisher Copyright: {\textcopyright} 2021, Springer Nature Switzerland AG.; 24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021 ; Conference date: 27-09-2021 Through 01-10-2021",
year = "2021",
doi = "10.1007/978-3-030-87199-4_37",
language = "English",
isbn = "9783030871987",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "391--401",
editor = "{de Bruijne}, Marleen and Cattin, {Philippe C.} and St{\'e}phane Cotin and Nicolas Padoy and Stefanie Speidel and Yefeng Zheng and Caroline Essert",
booktitle = "Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 - 24th International Conference, Proceedings",
}