Explainable Abusive Language Classification Leveraging User and Network Data

Maximilian Wich, Edoardo Mosca, Adrian Gorniak, Johannes Hingerl, Georg Groh

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

Online hate speech is a phenomenon with considerable consequences for our society. Its automatic detection using machine learning is a promising approach to contain its spread. However, classifying abusive language with a model that purely relies on text data is limited in performance due to the complexity and diversity of speech (e.g., irony, sarcasm). Moreover, studies have shown that a significant amount of hate on social media platforms stems from online hate communities. Therefore, we develop an abusive language detection model leveraging user and network data to improve the classification performance. We integrate the explainable AI framework SHAP (SHapley Additive exPlanations) to alleviate the general issue of missing transparency associated with deep learning models, allowing us to assess the model’s vulnerability toward bias and systematic discrimination reliably. Furthermore, we evaluate our multimodel architecture on three datasets in two languages (i.e., English and German). Our results show that user-specific timeline and network data can improve the classification, while the additional explanations resulting from SHAP make the predictions of the model interpretable to humans.

Original languageEnglish
Title of host publicationMachine Learning and Knowledge Discovery in Databases
Subtitle of host publicationApplied Data Science Track - European Conference, ECML PKDD 2021, Proceedings
EditorsYuxiao Dong, Nicolas Kourtellis, Barbara Hammer, Jose A. Lozano
PublisherSpringer Science and Business Media Deutschland GmbH
Pages481-496
Number of pages16
ISBN (Print)9783030865160
DOIs
StatePublished - 2021
EventEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2021 - Virtual, Online
Duration: 13 Sep 202117 Sep 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12979 LNAI
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

ConferenceEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2021
CityVirtual, Online
Period13/09/2117/09/21

Keywords

  • Abusive language
  • Classification model
  • Deep learning
  • Explainable AI
  • Hate speech
  • Social network

Fingerprint

Dive into the research topics of 'Explainable Abusive Language Classification Leveraging User and Network Data'. Together they form a unique fingerprint.

Cite this