TY - JOUR
T1 - Experimental and numerical study on the heat transfer characteristics of a newly-developed solar active thermal insulation system
AU - Steininger, Peter
AU - Gaderer, Matthias
AU - Steffens, Oliver
AU - Dawoud, Belal
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/3
Y1 - 2021/3
N2 - A newly-developed solar active thermal insulation system (SATIS) is introduced with the main objective to accomplish a highly-dependent total solar transmittance on the irradiation angle. SATIS is also designed to obtain the maximum transmittance at a prescribed design irradiation angle and to reduce it remarkably at higher irradiation angles. A purely mineral thermal insulation plaster with micro hollow glass spheres is applied to manufacture the investigated SATIS prototype. Light-conducting elements (LCEs) have been introduced into SATIS and suitable closing elements have been applied. The SATIS prototype has been investigated both experimentally and numerically. It turned out that the contributions of conduction, radiation and convection to the effective thermal conductivity of SATIS, without the closing elements (49mW m K ), amount to 86.2%, 13.2% and 0.6%, respectively. The angle-dependent short-wave radiation exchange within the LCE has been investigated via ray tracing. At the incidence angle of 19% (design angle), 27% of the radiation within the LCE is absorbed by the absorber plate, resulting in measured and computed total solar energy transmittances of 11.2%/11.7%, respectively. For a typical summer irradiation angle of 60%, 98% of the incident radiation is absorbed by the surfaces at the entrance of the LCE. The corresponding total solar energy transmittance amounts to 2.9%.
AB - A newly-developed solar active thermal insulation system (SATIS) is introduced with the main objective to accomplish a highly-dependent total solar transmittance on the irradiation angle. SATIS is also designed to obtain the maximum transmittance at a prescribed design irradiation angle and to reduce it remarkably at higher irradiation angles. A purely mineral thermal insulation plaster with micro hollow glass spheres is applied to manufacture the investigated SATIS prototype. Light-conducting elements (LCEs) have been introduced into SATIS and suitable closing elements have been applied. The SATIS prototype has been investigated both experimentally and numerically. It turned out that the contributions of conduction, radiation and convection to the effective thermal conductivity of SATIS, without the closing elements (49mW m K ), amount to 86.2%, 13.2% and 0.6%, respectively. The angle-dependent short-wave radiation exchange within the LCE has been investigated via ray tracing. At the incidence angle of 19% (design angle), 27% of the radiation within the LCE is absorbed by the absorber plate, resulting in measured and computed total solar energy transmittances of 11.2%/11.7%, respectively. For a typical summer irradiation angle of 60%, 98% of the incident radiation is absorbed by the surfaces at the entrance of the LCE. The corresponding total solar energy transmittance amounts to 2.9%.
KW - Angle-dependent total solar energy transmittance
KW - Effective thermal conductivity
KW - Experimental investigation
KW - Numerical simulation
KW - Ray tracing
KW - Solar active thermal insulation system (SATIS)
UR - http://www.scopus.com/inward/record.url?scp=85103480922&partnerID=8YFLogxK
U2 - 10.3390/buildings11030123
DO - 10.3390/buildings11030123
M3 - Article
AN - SCOPUS:85103480922
SN - 2075-5309
VL - 11
JO - Buildings
JF - Buildings
IS - 3
M1 - 123
ER -