TY - JOUR
T1 - Ewald-based Long-Range Message Passing for Molecular Graphs
AU - Kosmala, Arthur
AU - Gasteiger, Johannes
AU - Gao, Nicholas
AU - Günnemann, Stephan
N1 - Publisher Copyright:
© 2023 Proceedings of Machine Learning Research. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Neural architectures that learn potential energy surfaces from molecular data have undergone fast improvement in recent years. A key driver of this success is the Message Passing Neural Network (MPNN) paradigm. Its favorable scaling with system size partly relies upon a spatial distance limit on messages. While this focus on locality is a useful inductive bias, it also impedes the learning of long-range interactions such as electrostatics and van der Waals forces. To address this drawback, we propose Ewald message passing: a nonlocal Fourier space scheme which limits interactions via a cutoff on frequency instead of distance, and is theoretically well-founded in the Ewald summation method. It can serve as an augmentation on top of existing MPNN architectures as it is computationally inexpensive and agnostic to architectural details. We test the approach with four baseline models and two datasets containing diverse periodic (OC20) and aperiodic structures (OE62). We observe robust improvements in energy mean absolute errors across all models and datasets, averaging 10 % on OC20 and 16 % on OE62. Our analysis shows an outsize impact of these improvements on structures with high long-range contributions to the ground truth energy.
AB - Neural architectures that learn potential energy surfaces from molecular data have undergone fast improvement in recent years. A key driver of this success is the Message Passing Neural Network (MPNN) paradigm. Its favorable scaling with system size partly relies upon a spatial distance limit on messages. While this focus on locality is a useful inductive bias, it also impedes the learning of long-range interactions such as electrostatics and van der Waals forces. To address this drawback, we propose Ewald message passing: a nonlocal Fourier space scheme which limits interactions via a cutoff on frequency instead of distance, and is theoretically well-founded in the Ewald summation method. It can serve as an augmentation on top of existing MPNN architectures as it is computationally inexpensive and agnostic to architectural details. We test the approach with four baseline models and two datasets containing diverse periodic (OC20) and aperiodic structures (OE62). We observe robust improvements in energy mean absolute errors across all models and datasets, averaging 10 % on OC20 and 16 % on OE62. Our analysis shows an outsize impact of these improvements on structures with high long-range contributions to the ground truth energy.
UR - http://www.scopus.com/inward/record.url?scp=85174395468&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85174395468
SN - 2640-3498
VL - 202
SP - 17544
EP - 17563
JO - Proceedings of Machine Learning Research
JF - Proceedings of Machine Learning Research
T2 - 40th International Conference on Machine Learning, ICML 2023
Y2 - 23 July 2023 through 29 July 2023
ER -