Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes

Sebastian Mueller, Thomas Engleitner, Roman Maresch, Magdalena Zukowska, Sebastian Lange, Thorsten Kaltenbacher, Björn Konukiewitz, Rupert Öllinger, Maximilian Zwiebel, Alex Strong, Hsi Yu Yen, Ruby Banerjee, Sandra Louzada, Beiyuan Fu, Barbara Seidler, Juliana Götzfried, Kathleen Schuck, Zonera Hassan, Andreas Arbeiter, Nina SchönhuberSabine Klein, Christian Veltkamp, Mathias Friedrich, Lena Rad, Maxim Barenboim, Christoph Ziegenhain, Julia Hess, Oliver M. Dovey, Stefan Eser, Swati Parekh, Fernando Constantino-Casas, Jorge De La Rosa, Marta I. Sierra, Mario Fraga, Julia Mayerle, Günter Klöppel, Juan Cadiñanos, Pentao Liu, George Vassiliou, Wilko Weichert, Katja Steiger, Wolfgang Enard, Roland M. Schmid, Fengtang Yang, Kristian Unger, Günter Schneider, Ignacio Varela, Allan Bradley, DIeter Saur, Roland Rad

Research output: Contribution to journalArticlepeer-review

288 Scopus citations

Abstract

The poor correlation of mutational landscapes with phenotypes limits our understanding of the pathogenesis and metastasis of pancreatic ductal adenocarcinoma (PDAC). Here we show that oncogenic dosage-variation has a critical role in PDAC biology and phenotypic diversification. We find an increase in gene dosage of mutant KRAS in human PDAC precursors, which drives both early tumorigenesis and metastasis and thus rationalizes early PDAC dissemination. To overcome the limitations posed to gene dosage studies by the stromal richness of PDAC, we have developed large cell culture resources of metastatic mouse PDAC. Integration of cell culture genomes, transcriptomes and tumour phenotypes with functional studies and human data reveals additional widespread effects of oncogenic dosage variation on cell morphology and plasticity, histopathology and clinical outcome, with the highest Kras MUT levels underlying aggressive undifferentiated phenotypes. We also identify alternative oncogenic gains (Myc, Yap1 or Nfkb2), which collaborate with heterozygous Kras MUT in driving tumorigenesis, but have lower metastatic potential. Mechanistically, different oncogenic gains and dosages evolve along distinct evolutionary routes, licensed by defined allelic states and/or combinations of hallmark tumour suppressor alterations (Cdkn2a, Trp53, Tgfβ-pathway). Thus, evolutionary constraints and contingencies direct oncogenic dosage gain and variation along defined routes to drive the early progression of PDAC and shape its downstream biology. Our study uncovers universal principles of Ras-driven oncogenesis that have potential relevance beyond pancreatic cancer.

Original languageEnglish
Pages (from-to)62-68
Number of pages7
JournalNature
Volume554
Issue number7690
DOIs
StatePublished - 1 Feb 2018

Fingerprint

Dive into the research topics of 'Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes'. Together they form a unique fingerprint.

Cite this