Even-odd filling-factor switching in one-dimensional lateral superlattices

M. Tornow, D. Weiss, A. Manolescu, R. Menne, K. Klitzing, G. Weimann

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

The magnetoresistance of a two-dimensional electron system, subjected to a one-dimensional lateral potential modulation is studied for various potential amplitudes. The interplay between Landau level splitting and modulation broadening is shown to generate a transition from even to odd filling factors for the Shubnikov-de Haas resistance minima. The effect provides a tool to determine the potential amplitude. Calculations within a one-particle model agree with this evidence of the van Hove-like structure of the Landau bands.

Original languageEnglish
Pages (from-to)16397-16400
Number of pages4
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume54
Issue number23
DOIs
StatePublished - 1996
Externally publishedYes

Fingerprint

Dive into the research topics of 'Even-odd filling-factor switching in one-dimensional lateral superlattices'. Together they form a unique fingerprint.

Cite this