EVALUATION OF VIDEO CODING FOR MACHINES WITHOUT GROUND TRUTH

Kristian Fischer, Markus Hofbauer, Christopher Kuhn, Eckehard Steinbach, André Kaup

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

In the emerging field of video coding for machines, video datasets with pristine video quality and high-quality annotations are required for a comprehensive evaluation. However, existing video datasets with detailed annotations are severely limited in size and video quality. Thus, current methods have to either evaluate their codecs on still images or on already compressed data. To mitigate this problem, we propose an evaluation method based on pseudo ground-truth data from the field of semantic segmentation to the evaluation of video coding for machines. Through extensive evaluation, this paper shows that the proposed ground-truth-agnostic evaluation method results in an acceptable absolute measurement error below 0.7 percentage points on the Bjøntegaard Delta Rate compared to using the true ground truth for mid-range bitrates. We evaluate on the three tasks of semantic segmentation, instance segmentation, and object detection. Lastly, we utilize the ground-truth-agnostic method to measure the coding performances of the VVC compared against HEVC on the Cityscapes sequences. This reveals that the coding position has a significant influence on the task performance.

Original languageEnglish
Title of host publication2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1616-1620
Number of pages5
ISBN (Electronic)9781665405409
DOIs
StatePublished - 2022
Event2022 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2022 - Hybrid, Singapore
Duration: 22 May 202227 May 2022

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2022-May
ISSN (Print)1520-6149

Conference

Conference2022 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2022
Country/TerritorySingapore
CityHybrid
Period22/05/2227/05/22

Keywords

  • Pseudo Ground Truth
  • Semantic/Instance Segmentation
  • VVC
  • Video Coding for Machines

Fingerprint

Dive into the research topics of 'EVALUATION OF VIDEO CODING FOR MACHINES WITHOUT GROUND TRUTH'. Together they form a unique fingerprint.

Cite this