Abstract
Slurry-based 3D printing allows ceramic green bodies to be fabricated at high packing densities. In contrast to powder-based binder jetting, full densification of printed parts can be achieved in a subsequent sintering step as fine particles dispersed in a suspension are cast and compacted. Slurry-based 3D printing is thus expected to overcome the application limits of the powder-based alternative in metal casting in terms of unfavorable properties like high surface roughness, low density and low mechanical strength. To ensure stress-free drying and therefore high qualities of the compounds made in layers, it is crucial to fabricate single layers with a high level of homogeneity. This paper presents a CFD model based on the open-source simulation environment OpenFOAM to predict the resulting homogeneity of a cast slurry layer with defined parameter sets or coater geometries using the Volume-Of-Fluid method. Moreover, a novel method of spatial reconstruction is proposed to evaluate the surface quality of layers on a minimised computional demand. By comparing the results of the simulation with the real macroscopic behaviour determined in experiments, the approach is found to be a useful tool for suggesting suitable parameters and coater geometries for processing slurries. A precise reconstruction of the outline of the coating area with different process parameters and an approximate prediction of the effect on surface roughness was achieved.
Original language | English |
---|---|
Pages (from-to) | 43-54 |
Number of pages | 12 |
Journal | Production Engineering |
Volume | 16 |
Issue number | 1 |
DOIs | |
State | Published - Feb 2022 |
Keywords
- 3D printing
- Additive manufacturing
- CFD
- Ceramics
- Multiphase
- Simulation
- Slurry casting
- Spatial reconstruction
- VOF